

Development of a system of scintillation detectors for space radiation suppression in the experiment aims to study dd-fusion reactions with the low beam energy (PolFusion)

A. Rozhdestvenskij,

A. Vasilyev, M. Vznuzdaev, K. Ivshin, L. Kochenda, P. Kravtsov, P. Kravchenko, V. Larionov, A. Solovev, V. Trofimov, V. Fotyev

Petersburg Nuclear Physics Institute Gatchina, Russia

OD-fusion reactions

Applied and fundamental physics

oxygen/silicon)

(neutron sources)

• s-process

p-process

Astrophysics	Theory of nuclear interaction	Thermonuclear energy	Applied physics
 Big Bang Hydrogen burning Helium burning Advanced burning (carbon/neon/ oxygen/silicon) 	 Wide range of models Difficulties in describing direct/indirect measurements 	 Use of polarized fuel Cross section increase Controlling the Angular Distribution of Escape of 	 Tritium and helium-3 production 3He-oriented technology of gas-discharge detectors Neutron source

 Neutron source to produce medical isotopes 100Mo(n,2n)99Mo

Reaction

Products

Reactors with low

neutron yield

Big Bang nucleosynthesis \longrightarrow Primordial isotope ratio D/H

BBN Rates Combined 0,075 $d(d,n)^{3}$ He 0,053 d(d,p)t0,039 **Better dd-data** needed! $d(p,\gamma)^{3}He$ 0,036 Improved due to LUNA old $d(p,\gamma)^{3}$ He (before LUNA) 0,073 old $d(p,\gamma)^{3}$ He + other BBN Rates 0,099 0,02 0,06 0,1 0 0,04 0,08 0,12 $10^5 imes \sigma_{\text{D/H}}$

Deuterium Uncertainty Contributions

Global BBN Analysis: Tsung-Han Yeh, Keith Olive, Brian Fields (2021)

Ofelia Pisanti, Gianpiero Mangano, Gennaro Miele, and Pierpaolo Mazzella Primordial Deuterium after LUNA: concordances and error budget (2020)

Baye Phys. Rev. Lett. 107, 132502

(2011)

Theoretical methods

Many different cases \longrightarrow No "unique" model

Model	Applicable to	Comments
Potential/optical model	Capture Fusion	 Internal structure neglected Antisymetrization approximated
R-matrix	Capture Transfer	 No explicit wave function Physics simulated by some parameters
DWBA	Transfer	 Perturbation method Wave function in the entrance and exit channels
Microscopic models	Capture Transfer	 Based on a nucleon- nucleon interaction A-nucleon problems Predictive power

Pierre Descouvemont: Reaction models in nuclear astrophysics

Thermonuclear fusion and applied physics

- Cross section increasement
- Control over the direction of expansion of reaction products
- Suppression of the neutron channel

Exp.: Ch. Leemann et al., Helv. Phys. Acta **44**, 141 (1971) Theor.: G. Hupin et al. Nature Com. **10**, 321 (2019) Distributions of neutron sources in coordinates (R, Z) for (a) non-polarized case and (b) case of full parallel polarization

W.Yang, G.Li, X.Gong, X.Gao, X.Li, H.Li... Effect of the Fusion Fuels' Polarization on Neutron Wall Loading Distribution in CFETR (2021) https://doi.org/10.1080/15361055.2021.1969064 (China Fusion Engineering Test Reactor (CFETR))

Review of experiments

$\sigma(heta,\phi)=\sigma_0(heta)\left(1+\sum\limits_1^9p_j^bA_j^b(heta)+\sum\limits_1^9p_j^tA_j^t(heta)+\sum\limits_1^9p_j^bp_k^tC_{j,k}(heta) ight)$				
Experiment	Observable	$p_{l'} \sigma(heta, \phi) = \sigma_0(heta) \left(P_{l'}(heta) + ight)$	$\sum_{1}^{9}p_{j}K_{j}^{l^{\prime}}(heta)\Big)$	
${}^{2}ec{H}(ec{d},p)^{3}H$ ${}^{2}ec{H}(ec{d},n)^{3}He$	$C_{z,z} C_{y,y}$ $C_{zz,zz} C_{y,zz}$ $C_{y,xz} C_{zz,xz}$	POLFUSION	p-channel n-channel	
${}^{2}H(ec{d},ec{p})^{3}H$ ${}^{2}H(ec{d},ec{n})^{3}He$	$egin{array}{cccc} K_y^{x'} & K_y^{y'} & K_{xz}^{z'} \\ & \cdots \end{array}$	∎ ∎ Kata	A. et al., Phys. Rev. C 73, 024001 (2006) abuchi T. et al., Phys. Rev. C 64, 047601 (2001)	
$^{2}H(\vec{d,p})^{3}H$ $^{2}H(\vec{d,n})^{3}He$	$\begin{array}{c} A_y \\ A_{xz} A_{zz} \\ A_{xx} - A_{yy} \end{array}$	Tagishi Y. et al., Nucl. Instrum. Methods Phys. Res. A 402, 436 (1998) Fletcher K. A. et al., Phys. Rev. C 49, 2305 (1994) Tagishi Y. et al., Phys. Rev. C 46, R1155 (1992) Becker B. et al., Few-Body Syst. 13, 19 (1992)		
${}^{2}H(d, \vec{p}){}^{3}H$ ${}^{2}H(d, \vec{n}){}^{3}He$	$P^{x'} P^{y'} P^{z'}$	Beho Haeg Roge Kan	of A. F., May T. H., McGarry W. I., Nucl. Phys. A108, 250 (1968) gnsgen H., et al., Nucl. Phys. 73, 417 (1965) ers J. T. and Bond C. D., Nuclear Physics 53 (1964) 297 e P. P., Nuclear Physics 10 (1959) 429	
${}^{2}H(d,p){}^{3}H$ ${}^{2}H(d,n){}^{3}He$	$\sigma_0 \frac{d\sigma}{d\Omega}$	Brow Krau Theu McN Moff	 vn R. E. and N. Jarmie, Phys. Rev. C 41, 1391 (1990) ass A. et al., Nucl. Phys. A465, 150 (1987) as R. B., W. I. McGarry, and L. A. Beach, Nucl. Phys. 80, 273 (1966) beill K. G., Phil. Mag. 46 (1955) 800; Arnold W. R. et al., Phys. Rev. 93 (1954) 483 Cat J., D. Roaf and J. H. Sanders, Proc. Roy. Soc. A212 (1952) 220 zel W. A. and W. Whaling, Phys. Rev. 88 (1952) 1149 scher E., A. P. French and F. G. P. Seidl, Phys. Rev. 73 (1948) 815 	
0 50 100 150 E _{cm} , keV Anton Rozhdestvenskij				

8

C Latest research

The observables $A_{zz,0}$ and $A_{xx,0} - A_{yy,0}$ for the \vec{d} (d, p) ³H and \vec{d} (d, n) ³He processes at Td = 21 keV. The (cyan) bands show the results of the present calculations.

The QSF for the processes d(d, n) ³He and d(d, p) ³H.

M. Viviani: arXiv:2207.01433v1 [nucl-th] 4 Jul 2022

POLIS Polarized Ion Source

Ion beam 10-50 keV 1.2· 10¹⁶ ions/s

Nozzle: d = 1.3 mm T = 65 K

 4π – detector

PABS Polarized Atomic Beam Source

Atomic beam 0.01 eV $4 \cdot 10^{16}$ atoms/s

Nozzle: d = 2 mm T = 65-85 K

NRP Nuclear-Reaction Polarimeter

Detector coordinate system

Outside view

Inside view

Scintillation detector

Monte-Carlo simulation in Geant 4

Detector geometry

- 1 Vacuum chamber
- 2 Scintillators
- 3 PIN diodes
- 4 Printed circuit boards

Cosmic muon generator

Counts

Simulation results

SiPM Onsemi MicroFJ-30035-TSV

WLS fiber holders and SiPM mounts

Cosmic muons registration

Test assembly for registration of cosmic radiation

- 1 Scintillator
- 2 Amplifier and power supply PCB
- 3 DC voltage sources
- 4 Oscilloscope

0

200

C

-400

-200

t, HC

400

Performed:

- ✓ Modelling of the scintillation detector system was carried out
- ✓ Optimal cosmic ray generator was selected
- ✓ Designed electronics for SiPM
- ✓ A test system was assembled

Work Plan:

- □ Assembly of the system outside the vacuum chamber
- Connecting the system to a common data acquisition system
- Recruitment of cosmic ray statistics
- Placing the system in the vacuum chamber of the main detector
- Obtaining experimental data

Thank you for your attention!

pz p_{ZZ} (vector) (tensor) -2/3 0 0.5 m 0 +1-1/3 +1 -1 +1 -1/2 $\pm 1/2$ atomic beam d_{nozzle} = 2 mm D, 0.01 eV T_{nozzle} = 84 K $2 \cdot 10^{16}$ atoms/s RF_{power} = 300 W **Polarizing system:** Sextupoles + Quadrupoles + MFT + Sextupoles + MFT

Optical polarization ³He

G.Hupin, S.Quaglioni, P.Navratil (2019) https://doi.org/10.1038/s41467-018-08052-6

Cross section

$$\begin{split} \sigma(\Theta, \Phi) &= \sigma_0(\Theta) \left\{ 1 + \frac{3}{2} \left[A_y^{(b)}(\Theta) p_y + A_y^{(t)} q_y \right] + \frac{1}{2} \left[A_{zz}^{(b)}(\Theta) p_{zz} + A_{zz}^{(t)}(\Theta) q_{zz} \right] \right. \\ &+ \frac{1}{6} \left[A_{xx-yy}^{(b)}(\Theta) p_{xx-yy} + A_{xx-yy}^{(t)}(\Theta) q_{xx-yy} \right] \\ &+ \frac{2}{3} \left[A_{xz}^{(b)}(\Theta) p_{yx} + A_{xz}^{(t)}(\Theta) q_{xz} \right] \\ &+ \frac{9}{4} \left[C_{y,y}(\Theta) p_{y} q_y + C_{x,x}(\Theta) p_x q_x + C_{x,z}(\Theta) p_x q_z \right. \\ &+ C_{z,x}(\Theta) p_z q_x + C_{z,z}(\Theta) p_z q_y \right] \\ &+ \frac{3}{4} \left[C_{y,zz}(\Theta) p_y q_{zz} + C_{zz,y}(\Theta) p_{zz} q_y \right] \\ &+ C_{y,zz}(\Theta) p_y q_x + C_{z,yz}(\Theta) p_z q_y + C_{x,yz}(\Theta) p_y q_y \right. \\ &+ \left. \frac{1}{4} \left[C_{y,xx-yy}(\Theta) p_y q_{xx-yy} + C_{xx-yy,y}(\Theta) p_{xx-yy} q_y \right. \\ &+ \left. \frac{1}{4} \left[C_{zz,xz}(\Theta) p_{zz} q_{xz} + C_{yz,zz}(\Theta) p_{yz} q_{zz} \right] \right. \\ &+ \left. \frac{1}{4} \left[C_{xz,xz}(\Theta) p_{xz} q_{xz} + C_{yz,yz}(\Theta) p_{yz} q_{yz} \right] \right. \\ &+ \left. \frac{1}{4} \left[C_{xy,yz}(\Theta) p_{xy} q_{xz} + C_{yz,yz}(\Theta) p_{yz} q_{yz} \right] \right. \\ &+ \left. \frac{1}{4} \left[C_{xy,yz}(\Theta) p_{xy} q_{xz} + C_{yz,yz}(\Theta) p_{yz} q_{yz} \right] \right. \\ &+ \left. \frac{1}{9} \left[C_{xz,xz}(\Theta) p_{xz} q_{xz} + C_{yz,yz}(\Theta) p_{yz} q_{yz} \right] \right. \\ &+ \left. \frac{1}{9} \left[C_{xy,yy}(\Theta) p_{xy} q_{xy} + C_{yz,xy}(\Theta) p_{yz} q_{xy} \right] \right. \\ &+ \left. \frac{1}{36} \left[C_{xx,yy}(\Theta) p_{xx} q_{xx-yy} + C_{xx-yy,xz}(\Theta) p_{xx-yy} q_{xz} \right] \\ &+ \left. \frac{1}{36} \left[C_{xx,yy}(\Theta) p_{xx-yy} q_{xz-yy} + C_{xy,y}(\Theta) p_{xy} q_{xy} + \left. \frac{1}{2} \left[C_{x,yy}(\Theta) p_{xy} q_{xy} + C_{xy,x}(\Theta) p_{xy} q_{xy} + C_{xy,y}(\Theta) p_{xy} q_{xy} + C_{xy,y$$

The spins of both deuterons are the same: Only $p_z(q_z)$ and $p_{zz}(q_{zz}) \neq 0$

$$\sigma(\Theta, \Phi) = \sigma_0(\Theta) \left\{ 1 + \frac{3}{2} \left[A_{zz}^{(b)}(\Theta) p_{zz} + A_{zz}^{(t)}(\Theta) q_{zz} \right] \right. \\ \left. + \frac{9}{4} C_{z,z}(\Theta) p_z q_z + \frac{1}{4} C_{zz,zz}(\Theta) p_{zz} q_{zz} \right\}$$

 $\begin{array}{l} \mbox{Polarized beam } (p_{i,j} \neq 0, \ q_{i,j} = 0): \\ \sigma(\Theta, \Phi) = \sigma_0(\Theta) & \cdot \ \{1 + 3/2 \ A_y(\Theta) \ p_y + 1/2 \ A_{xz}(\Theta) \ p_{xz} \\ & + 1/6 \ A_{xx-yy}(\Theta) \ p_{xx-zz} \\ & + 2/3 \ A_{zz}(\Theta) \ p_{zz} \ \} \end{array}$