

M.A Malimable

www.ufs.ac.za

28th International Scientific Conference of Young Scientists and Specialists

AYSS 2024, Dubna

28/10 - 01/11 2024

UFS NATURAL AND AGRICULTURAL SCIENCES

Overview

- Background and Introduction
- Applications
- Aim of this study
- Experimental
- Results
- Conclusion

Background and Introduction

- Why $ZnAl_2O_4/ZnO$?
 - Exhibit enhanced performance due to their synergistic effects
 - Improved thermal stability
 - **High efficiency**
 - **Cost-effective**
- Samarium (Sm³⁺) luminescent activator with a reddish-orange emission.
- **Doping = strong luminescence intensity.**

Applications

Aim of this study

• This study aims to investigate the influence of varying the Sm³⁺ concentration on the ZnAl₂O₄/ZnO mixed phases.

Experimental

Results

Figure 1: XRD diffraction of the undoped and Sm³⁺ doped ZZ samples.

Figure 2: (a) Zoomed version ZnO (101) and $ZnAl_2O_4$ (311) diffraction peaks (b) Deconvolution of the most intense diffraction peak for the undoped ZZ sample

Table 1: Calculated average crystallite size

	Crystallite size (nm)	
[Sm ³⁺](%)	D _{ZnAl2O4}	D _{znO}
Undoped	13	33
0.5 %	14	15
1.0%	14	12
2.0%	12	10
3.0%	-	17

Figure 3: Average crystalline size as a function of Sm³⁺ concentration.

UFS

Figure 4: SEM micrographs of the (a) undoped ZZ, (b) 1.0%, (c) 2.0%, and (d) 3.0% Sm³⁺ doped samples.

Figure 5: (a) UV-vis reflectance spectra; (b) Plot to determine the bandgap of the ZZ and Sm³⁺ doped nanopowders

Figure 6: Bandgap as a function of Sm³⁺ concentration.

Figure 7: (a) Peak fitting of the undoped ZZ mixed phases;

(b) Emission spectra;

(c) Normalized emission spectra of the ZZ and Sm³⁺ doped nanopowders

(d) Graph of intensity versus the concentrations of Sm^{3+} ions at 382 and 613 nm.

Figure 8: The anticipated emission pathway for the (a) ZnO, (b) $ZnAl_2O_4$ and (c) Ionic emissions of Sm³⁺.

Figure 9: The CIE chromaticity diagram for the prepared nanopowders.

Conclusion

- Mixed phases $ZnAl_2O_4/ZnO$ (ZZ) nanopowders were prepared using precipitation and annealed at 750 °C for $3^{1/2}$ hrs.
- XRD results revealed a phase transition from cubic $ZnAl_2O_4$ to a hexagonal wurtzite phase
- The surface morphology of the samples was influenced by varying the Sm³⁺ concentration.
- The E_g decreased with an increase in the Sm³⁺ concentration.
- PL showed emission peaks attributed to the ZnO, ZnAl₂O₄ and Sm³⁺ transitions and Sm³⁺ concentration influenced the luminescence intensity and emission wavelength.
- The CIE chromaticity diagram indicated that varying the Sm³⁺ concentration could adjust the emission colour.

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology.

Thank you

T: +27(0)73 076 0412 | spkhambule31@gmail.com | www.ufs.ac.za

sasou

Department: Science and Technology REPUBLIC OF SOUTH AFRICA UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

