



# Low-energy spectra of nobelium isotopes: Skyrme randomphase-approximation analysis

### <u>M.A. Mardyban<sup>1,2</sup></u>, V. O. Nesterenko<sup>1,2</sup>, R.V. Jolos<sup>1,2</sup>, P.-G. Reinhard<sup>3</sup>, A. Repko<sup>4</sup>

<sup>1</sup>Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

<sup>2</sup> Dubna State University, Dubna, Moscow Region 141982, Russia

<sup>3</sup> Institut für Theoretische Physik II, Universität Erlangen, D-91058, Erlangen, Germany

<sup>4</sup>Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

2024

# Spectroscopy of superheavy nuclei is now one of the most hot research areas



Perhaps, the most extensive experimental data are collected for transfermium region, in particular for nobelium isotopes

# At the moment, there are experimental\* spectroscopic data only for 3/7 nuclei: <sup>250,252,254</sup>No



#### \* NNDC data base

# The chain of even-even Nobelium nuclei is one of the most studied superheavy nuclei:

- The low-lying spectrum of <sup>250,252,254</sup>No;
- Quadrupole moment of <sup>252,254</sup>No
- Dipole giant resonance in <sup>252,254</sup>No;
- The scissors mode of <sup>250–256</sup>No;

[A. D. Efimov, I. N. Izosimov, JINR-E6-2022-19 (2022)]
[G.G. Adamian, N.V. Antonenko and W. Scheid, Phys. Rev., 024320,C 81 (2010)]
[R.V. Jolos, L.A. Malov, N.Yu Shirikova and A.V.Sushkov, J.Phys. G: Nucl. Part. Phys, 115103 (2011)]

[R.V. Jolos et all, Phys. Part. Nucl. Lett. Vol. 19, No. 6 (2022)]

[W. Kleinig et all, Phys. Rev. C 78, 044313 (2008)]

[E.B. Balbutsev, I.V. Molodtsova, preprint arXiv: 2309.09340v2 (2023)]

- Single-particle properties and rotational bands in the <sup>252,254</sup>No; [Yue Shi et all, Phys. Rev. C 89, 034309 (2014)] [J. Dobaczewski et all, Nucl. Phys. A 944, 388 (2015)]
- Spontaneous fission for the nuclei <sup>250-260</sup>No

[R. Rodriguez-Guzman, L.M. Robledo, Phys. Rev. C 98, 034308 (2018)]

But, despite the great interest in these nuclei, the characteristics of the ground state of these isotopes are still poorly studied...

## Despite an impressive theoretical effort:

![](_page_4_Picture_1.jpeg)

- Even modern self-consistent models still give rather different results and exhibit troubles in description of shell structures and other features seen in experiment
- This work was partly done within QPM, IBM, double nuclear system, and cluster models (however, the above models are not self-consistent)
- It is worth to enlarge the scope of calculated characteristics of superheavy nuclei and inspect, within the same self-consistent theory, a full set of low-energy vibrational states of main multipolarities:  $K^{n} = 0^{+}, 2^{+}, 3^{+}, 0^{-}, 1^{-}, 2^{-}, 8^{-}$

| 252No                          | 253No             | 254No                      | 255No             | 256No                | 257No                     | 258No   | 259No                    | 260No   |
|--------------------------------|-------------------|----------------------------|-------------------|----------------------|---------------------------|---------|--------------------------|---------|
| 2.45 s                         | 1.61 min          | 51.2 s                     | 3.52 min          | 2.93 s               | 24.5 s                    | 1.23 ms | 58 min                   | 107 ms  |
| α=65.3%<br>SF=33%<br>ε+β+=1.7% | α=55%<br>ε+β+=45% | a=90%<br>e=10%<br>SF=0.17% | ε+β+=70%<br>α=30% | α=99.47%<br>SF=0.53% | a=85%<br>e=15%<br>SF<1.5% | SF=100% | a=75%<br>e=25%<br>SF<10% | SF=100% |

The main attention is paid to <sup>252,254</sup>No where calculated:

- K<sup>n</sup> = 8<sup>-</sup> isomers (at 1.254 MeV in <sup>252</sup>No and 1.295 MeV in <sup>254</sup>No)
- Pairing vibrations K<sup>n</sup> = 0<sup>+</sup> (at 0.77 MeV in <sup>252</sup>No and 0.22 MeV in <sup>254</sup>No)
- States K<sup>n</sup>=2+ (1.58-1.70 MeV in <sup>252</sup>No and 1.31-1.45 MeV in <sup>254</sup>No)
- Hexadecapole states with  $K^n = 3^+$  and  $4^+$
- Octupole states with  $K^n = 0^-$ ,  $1^-$ ,  $2^-$  and  $3^-$

| 252No<br>2.45 s                | 253No<br>1.61 min | 254No<br>51.2 s            | 255No<br>3.52 min | 256No<br>2.93 s      | 257No<br>24.5 s           | 258No<br>1.23 ms | 259No<br>58 min          | 260No<br>107 ms |
|--------------------------------|-------------------|----------------------------|-------------------|----------------------|---------------------------|------------------|--------------------------|-----------------|
| α=65.3%<br>SF=33%<br>ε+β+=1.7% | α=55%<br>ε+β+=45% | a=90%<br>e=10%<br>SF=0.17% | ε+β+=70%<br>α=30% | α=99.47%<br>SF=0.53% | a=85%<br>e=15%<br>SF<1.5% | SF=100%          | a=75%<br>e=25%<br>SF<10% | SF=100%         |

The main attention is paid to <sup>252,254</sup>No where calculated:

- K<sup>n</sup> = 8<sup>-</sup> isomers (at 1.254 MeV in <sup>252</sup>No and 1.295 MeV in <sup>254</sup>No)
- Pairing vibrations K<sup>n</sup> = 0<sup>+</sup> (at 0.77 MeV in <sup>252</sup>No and 0.22 MeV in <sup>254</sup>No)
- States K<sup>n</sup>=2+ (1.58-1.70 MeV in <sup>252</sup>No and 1.31-1.45 MeV in <sup>254</sup>No)
- Hexadecapole states with  $K^n = 3^+$  and  $4^+$
- Octupole states with  $K^n = 0^-$ ,  $1^-$ ,  $2^-$  and  $3^-$

## **Skyrme forces**

| force   | $m/m^*$ | kind of pairing |                                          |
|---------|---------|-----------------|------------------------------------------|
| SVbas   | 0.90    | surface         | [P. Klupfel et al, PRC 79 034310 (2009)] |
| $SkM^*$ | 0.79    | volume          | [J. Bartel et al, NPA 386, 79 (1982)]    |
| SLy6    | 0.69    | volume          | [E. Chabanat et al, NPA, 635 231 (1998)] |

$$V_{\text{pair}}^{q}(\mathbf{r}, \mathbf{r}') = G_{q} \left[ 1 - \eta \left( \frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r} - \mathbf{r}')$$

Where Gq are pairing strength constants (q = p, n). We get so-called density-dependent surface pairing for  $\eta = 1$  and volume pairing for  $\eta = 0$ 

## **Calculation details:**

- Codes SkyAx [P.-G. Reinhard et al, Comp. Phys. Communic. 258, 107603 (2021)] QRPA [A. Repko et al, arXiv:1510.01248 (nucl-th), 2015]
- Accurate extraction of spurious admixtures [V. O. Nesterenko et al, Eur. Phys. J. A 55, 213 (2019)]
- 2D grid in cylindric coordinates
- All proton and neutron s-p levels up to +40 MeV

![](_page_8_Figure_0.jpeg)

### The characteristics of the ground states of <sup>250-262</sup>No with increasing number neutrons

$$\beta_{20} = \frac{4\pi}{3} \frac{Q_{20}}{AR^2}$$
,  $R = R_0 A^{1/3}$ ,  $R_0 = 1.2$  fm

$$J_{TV} = 2\sum_{\nu>0} \frac{|<\nu|J_x|0>|^2}{E_\nu - E_0}$$

$$V_{\text{pair}}^{q}(\mathbf{r},\mathbf{r}') = G_{q} \left[ 1 - \eta \left( \frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r}-\mathbf{r}')$$

$$E_I = \frac{\hbar^2}{2\mathcal{J}}I(I+1)$$

Initially it was assumed that these characteristics would evolve monotonically, but we see irregularity at <sup>252, 254</sup>No

![](_page_9_Figure_0.jpeg)

## The characteristics of the ground states of <sup>250-262</sup>No with increasing number neutrons

$$\beta_{20} = \frac{4\pi}{3} \frac{Q_{20}}{AR^2}$$
,  $R = R_0 A^{1/3}$ ,  $R_0 = 1.2$  fm

$$J_{TV} = 2\sum_{\nu>0} \frac{|<\nu|J_x|0>|^2}{E_\nu - E_0}$$

$$V_{\text{pair}}^{q}(\mathbf{r},\mathbf{r}') = G_{q} \left[ 1 - \eta \left( \frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r}-\mathbf{r}')$$

$$E_I = \frac{\hbar^2}{2\mathcal{J}}I(I+1)$$

Initially it was assumed that these characteristics would evolve monotonically, but we see irregularity at <sup>252, 254</sup>No

![](_page_10_Figure_0.jpeg)

## K<sup>n</sup>= 8<sup>-</sup> isomers

#### <sup>252</sup>No: the 8<sup>-</sup> state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

#### <sup>254</sup>No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991) R.M. Clark et al, Phys. Lett. B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu.
   Shirikova and A.V. Sushkov, J. Phys.
   G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J A43, 55 (2010)

| Force | $E_{\nu=1}$ | B(E98) | qq'                                | $\epsilon_{qq'}$ | $N_{qq'}$ | F-scheme |
|-------|-------------|--------|------------------------------------|------------------|-----------|----------|
|       | [MeV]       | [W.u.] |                                    | [MeV]            |           |          |
|       |             | 252    | $^{2}$ No, $E_{x}$ =1.254 M        | leV              |           |          |
| SLy6  | 1.361       | 0.038  | $nn[624\downarrow,734\uparrow]$    | 1.317            | 0.996     | F,F+1    |
| SkM*  | 1.330       | 0.025  | $nn[734\uparrow,624\downarrow]$    | 1.198            | 0.992     | F,F+1    |
| SVbas | 1.913       | 0.119  | $nn[624\downarrow,734\uparrow]$    | 1.751            | 0.912     | F,F+1    |
|       |             | 254    | No, $E_{exp} = 1.295$ N            | ЛеV              |           |          |
| SLy6  | 1.747       | 0.014  | $nn[734\uparrow,613\uparrow]$      | 1.780            | 0.994     | F,F+3    |
| SkM*  | 1.554       | 0.333  | $pp[514\downarrow, 624\uparrow, ]$ | 1.482            | 0.990     | F+1,F+2  |
| SVbas | 1.994       | 0.370  | $pp[514\downarrow, 624\uparrow,]$  | 1.751            | 0.791     | F+1,F+2  |
|       |             |        | $nn[734\uparrow,613\uparrow]$      | 2.026            | 0.169     | F,F+3    |

Features of calculated 8– states in <sup>252,254</sup>No: QRPA excitation energies  $E_v = 1$ , reduced transition probabilities B(E98), the main 2qp component qq', its energy  $\varepsilon_{qq'}$ , contribution to the state norm  $N_{qq'}$  and F-scheme of 2qp excitation.

## $K^n = 8^-$ isomers

8 +

6 +

4+

2 +

0 +

#### <sup>252</sup>No: the 8<sup>-</sup> state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

#### <sup>254</sup>No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991) R.M. Clark et al, Phys. Lett. • B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu. • Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J ٠ A43, 55 (2010)

![](_page_12_Figure_11.jpeg)

R.M. Clark et al, Phys. Lett. B690, 19 (2010)

#### Pairing vibrations K<sup>n</sup> = 0<sup>+</sup>

| Force | $K^{\pi}_{\nu}$ | E [MeV] | B(E20) [W.u.] | $\rho^2(E0) \ (10^{-3})$ | qq'                                                 | $\epsilon_{qq'}$ [MeV] | $N_{qq'}$ | F-struct |
|-------|-----------------|---------|---------------|--------------------------|-----------------------------------------------------|------------------------|-----------|----------|
|       |                 |         |               | 252                      | <sup>2</sup> No                                     |                        |           |          |
| SLy6  | $0^+_1$         | 0.77    | 0.03          | 0.08                     | $nn[734\downarrow,734\downarrow]$                   | 1.07                   | 0.58      | F+1,F+1  |
|       |                 |         |               |                          | $nn[624\downarrow, 624\downarrow]$                  | 1.56                   | 0.17      | F,F      |
|       |                 |         |               |                          | $nn[622\uparrow,622\uparrow]$                       | 1.53                   | 0.16      | F-1,F-1  |
|       | $0^{+}_{2}$     | 1.13    | 1.36          | 0.59                     | $pp[514\downarrow, 514\downarrow]$                  | 1.16                   | 0.56      | F+1, F+1 |
|       |                 |         |               |                          | $pp[521\downarrow,521\downarrow]$                   | 1.16                   | 0.38      | F,F      |
| SkM*  | $0^+_1$         | 0.84    | 1.12          | 0.32                     | $pp[521\downarrow,521\downarrow]$                   | 1.01                   | 0.46      | F,F      |
|       |                 |         |               |                          | $pp[514\downarrow, 514\downarrow]$                  | 1.09                   | 0.42      | F+1,F+1  |
|       | $0^+_2$         | 1.20    | 0.02          | 0.18                     | $nn[624\downarrow, 624\downarrow]$                  | 1.19                   | 0.52      | F,F      |
|       |                 |         |               |                          | $nn[734\uparrow,734\uparrow]$                       | 1.21                   | 0.44      | F+1,F+1  |
| SVbas | $0^+_1$         | 1.25    | 5.83          | 0.66                     | $pp[514\downarrow, 514\downarrow]$                  | 1.23                   | 0.56      | F+1,F+1  |
|       |                 |         |               |                          | $pp[521\downarrow, 521\downarrow]$                  | 1.20                   | 0.36      | F,F      |
|       | $0^+_2$         | 1.49    | 0.65          | 0.63                     | $pp[633\uparrow,633\uparrow]$                       | 1.60                   | 0.70      | F-1,F-1  |
|       |                 |         |               | -                        | $pp[521\downarrow,521\downarrow]$                   | 1.20                   | 0.28      | F,F      |
|       |                 |         |               | 254                      | No                                                  |                        |           |          |
| SLy6  | $0^+_1$         | 0.22    | 0.002         | 0.002                    | $nn[734\uparrow,734\uparrow]$                       | 1.05                   | 0.41      | F,F      |
|       |                 |         |               |                          | $nn[620\uparrow,620\uparrow]$                       | 1.27                   | 0.27      | F+1,F+1  |
|       |                 |         |               |                          | $nn[622\downarrow,622\downarrow]$                   | 1.38                   | 0.20      | F+2,F+2  |
|       | $0^+_2$         | 1.13    | 1.31          | 0.53                     | $pp[514\downarrow, 514\downarrow]$                  | 1.16                   | 0.56      | F+1, F+1 |
|       |                 |         |               |                          | $pp[521\downarrow,521\downarrow]$                   | 1.15                   | 0.40      | F,F      |
| SkM*  | $0^+_1$         | 0.77    | 0.17          | 0.02                     | $nn[624\downarrow, 624\downarrow]$                  | 1.41                   | 0.33      | F,F      |
|       |                 |         |               |                          | $nn[620\uparrow,620\uparrow]$                       | 1.36                   | 0.23      | F+1, F+1 |
|       |                 |         |               |                          | $nn[734\uparrow,734\uparrow]$                       | 1.81                   | 0.12      | F-1,F-1  |
|       | $0^+_2$         | 0.88    | 4.37          | 0.36                     | $pp[521\downarrow,521\downarrow]$                   | 1.02                   | 0.45      | F,F      |
|       |                 |         |               |                          | $pp[514\downarrow, 514\downarrow]$                  | 1.08                   | 0.43      | F+1,F+1  |
| SVbas | $0_{1}^{+}$     | 1.24    | 6.34          | 0.67                     | $pp[514\downarrow,514\downarrow]$                   | 1.22                   | 0.57      | F+1,F+1  |
|       |                 |         |               |                          | $pp[521\downarrow,521\downarrow]$                   | 1.19                   | 0.34      | F,F      |
|       | $0^+_2$         | 1.45    | 0.52          | 0.36                     | $pp[\overline{633\uparrow},\overline{633\uparrow}]$ | 1.59                   | 0.45      | F-1,F-1  |
|       |                 |         |               |                          | $pp[521\downarrow, 521\downarrow]$                  | 1.19                   | 0.25      | F,F      |

- Calculations predict for the lowest
   K<sup>n</sup> = 0<sup>+</sup> state in <sup>254</sup>No an exceptionally low excitation energy 0.22 MeV (this state is basically pairing vibrational)
- Recent shell-model calculations with the projection after variation also predicts K<sup>n</sup> = 0<sup>+</sup> state with E=0.86 MeV as the lowest non-rotational state of <sup>254</sup>No

(D.D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022))

So, excited 0+ states below 1 MeV in superheavy nuclei are quite possible

# At the moment, there are experimental\* spectroscopic data only for 3/7 nuclei: <sup>250,252,254</sup>No

![](_page_14_Figure_1.jpeg)

#### \* NNDC data base

#### Pairing vibrations K<sup>n</sup> = 0<sup>+</sup>

| Force | $K^{\pi}_{\nu}$ | E [MeV] | B(E20) [W.u.] | $\rho^2(E0) \ (10^{-3})$ | qq'                                                 | $\epsilon_{qq'}$ [MeV] | $N_{qq'}$ | F-struct |
|-------|-----------------|---------|---------------|--------------------------|-----------------------------------------------------|------------------------|-----------|----------|
|       |                 |         |               | 252                      | <sup>2</sup> No                                     |                        |           |          |
| SLy6  | $0^+_1$         | 0.77    | 0.03          | 0.08                     | $nn[734\downarrow,734\downarrow]$                   | 1.07                   | 0.58      | F+1,F+1  |
|       |                 |         |               |                          | $nn[624\downarrow, 624\downarrow]$                  | 1.56                   | 0.17      | F,F      |
|       |                 |         |               |                          | $nn[622\uparrow,622\uparrow]$                       | 1.53                   | 0.16      | F-1,F-1  |
|       | $0^{+}_{2}$     | 1.13    | 1.36          | 0.59                     | $pp[514\downarrow, 514\downarrow]$                  | 1.16                   | 0.56      | F+1, F+1 |
|       |                 |         |               |                          | $pp[521\downarrow,521\downarrow]$                   | 1.16                   | 0.38      | F,F      |
| SkM*  | $0^+_1$         | 0.84    | 1.12          | 0.32                     | $pp[521\downarrow,521\downarrow]$                   | 1.01                   | 0.46      | F,F      |
|       |                 |         |               |                          | $pp[514\downarrow, 514\downarrow]$                  | 1.09                   | 0.42      | F+1,F+1  |
|       | $0^+_2$         | 1.20    | 0.02          | 0.18                     | $nn[624\downarrow, 624\downarrow]$                  | 1.19                   | 0.52      | F,F      |
|       |                 |         |               |                          | $nn[734\uparrow,734\uparrow]$                       | 1.21                   | 0.44      | F+1,F+1  |
| SVbas | $0^+_1$         | 1.25    | 5.83          | 0.66                     | $pp[514\downarrow, 514\downarrow]$                  | 1.23                   | 0.56      | F+1,F+1  |
|       |                 |         |               |                          | $pp[521\downarrow, 521\downarrow]$                  | 1.20                   | 0.36      | F,F      |
|       | $0^+_2$         | 1.49    | 0.65          | 0.63                     | $pp[633\uparrow,633\uparrow]$                       | 1.60                   | 0.70      | F-1,F-1  |
|       |                 |         |               | -                        | $pp[521\downarrow,521\downarrow]$                   | 1.20                   | 0.28      | F,F      |
|       |                 |         |               | 254                      | No                                                  |                        |           |          |
| SLy6  | $0^+_1$         | 0.22    | 0.002         | 0.002                    | $nn[734\uparrow,734\uparrow]$                       | 1.05                   | 0.41      | F,F      |
|       |                 |         |               |                          | $nn[620\uparrow,620\uparrow]$                       | 1.27                   | 0.27      | F+1,F+1  |
|       |                 |         |               |                          | $nn[622\downarrow,622\downarrow]$                   | 1.38                   | 0.20      | F+2,F+2  |
|       | $0^+_2$         | 1.13    | 1.31          | 0.53                     | $pp[514\downarrow, 514\downarrow]$                  | 1.16                   | 0.56      | F+1, F+1 |
|       |                 |         |               |                          | $pp[521\downarrow,521\downarrow]$                   | 1.15                   | 0.40      | F,F      |
| SkM*  | $0^+_1$         | 0.77    | 0.17          | 0.02                     | $nn[624\downarrow, 624\downarrow]$                  | 1.41                   | 0.33      | F,F      |
|       |                 |         |               |                          | $nn[620\uparrow,620\uparrow]$                       | 1.36                   | 0.23      | F+1, F+1 |
|       |                 |         |               |                          | $nn[734\uparrow,734\uparrow]$                       | 1.81                   | 0.12      | F-1,F-1  |
|       | $0^+_2$         | 0.88    | 4.37          | 0.36                     | $pp[521\downarrow,521\downarrow]$                   | 1.02                   | 0.45      | F,F      |
|       |                 |         |               |                          | $pp[514\downarrow, 514\downarrow]$                  | 1.08                   | 0.43      | F+1,F+1  |
| SVbas | $0_{1}^{+}$     | 1.24    | 6.34          | 0.67                     | $pp[514\downarrow,514\downarrow]$                   | 1.22                   | 0.57      | F+1,F+1  |
|       |                 |         |               |                          | $pp[521\downarrow,521\downarrow]$                   | 1.19                   | 0.34      | F,F      |
|       | $0^+_2$         | 1.45    | 0.52          | 0.36                     | $pp[\overline{633\uparrow},\overline{633\uparrow}]$ | 1.59                   | 0.45      | F-1,F-1  |
|       |                 |         |               |                          | $pp[521\downarrow, 521\downarrow]$                  | 1.19                   | 0.25      | F,F      |

- Calculations predict for the lowest
   K<sup>n</sup> = 0<sup>+</sup> state in <sup>254</sup>No an exceptionally low excitation energy 0.22 MeV (this state is basically pairing vibrational)
- Recent shell-model calculations with the projection after variation also predicts K<sup>n</sup> = 0<sup>+</sup> state with E=0.86 MeV as the lowest non-rotational state of <sup>254</sup>No

(D.D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022))

So, excited 0+ states below 1 MeV in superheavy nuclei are quite possible

#### Hexadecapole states with K<sup>n</sup> = 3<sup>+</sup> and 4<sup>+</sup>

| Force | E    | B(E44)          | qq'                               | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|------|-----------------|-----------------------------------|------------------|-----------|----------|
|       |      |                 | $^{252}$ No                       |                  |           |          |
| SLy6  | 1.16 | $5.5 \ 10^{-4}$ | $pp[521\downarrow,514\uparrow]$   | 1.16             | 1.00      | F,F+1    |
|       | 2.11 | 1.78            | $nn[624\downarrow,620\uparrow]$   | 2.34             | 0.50      | F,F+2    |
|       |      |                 | $nn[622\uparrow,622\downarrow]$   | 2.41             | 0.42      | F-1,F+3  |
| SkM*  | 1.00 | 3.61            | $pp[521\downarrow,514\downarrow]$ | 1.05             | 0.97      | F,F+1    |
|       | 1.69 | 2.67            | $pp[521\downarrow,512\uparrow]$   | 1.61             | 0.94      | F,F+3    |
| SVbas | 1.19 | 2.73            | $pp[521\downarrow,514\downarrow]$ | 1.21             | 0.98      | F,F+1    |
|       | 1.93 | 2.43            | $pp[521\downarrow,512\uparrow]$   | 1.86             | 0.95      | F,F+3    |
|       |      |                 | $^{254}$ No, $E_x$ =0.987         | ∕ Me\            | Ι         |          |
| SLy6  | 1.16 | 0.07            | $pp[521\downarrow,514\downarrow]$ | 1.15             | 1.00      | F,F+1    |
|       | 1.89 | $1 \ 10^{-4}$   | $nn[620\uparrow,613\uparrow]$     | 1.89             | 1.00      | F+1,F+3  |
| SkM*  | 1.01 | 3.24            | $pp[521\downarrow,514\downarrow]$ | 1.05             | 0.97      | F,F+1    |
|       | 1.41 | 2.15            | $nn[624\downarrow],620\uparrow]$  | 1.39             | 1.00      | F,F+1    |
| SVbas | 1.17 | 3.00            | $pp[521\downarrow,514\downarrow]$ | 1.20             | 0.99      | F,F+1    |
|       | 1.87 | 3.28            | $nn[620\uparrow,613\uparrow]$     | 1.98             | 0.48      | F+1,F+3  |
|       |      |                 | $pp[521\downarrow,512\uparrow]$   | 1.89             | 0.47      | F,F+3    |

| Force | E    | B(E43) | qq'                               | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|------|--------|-----------------------------------|------------------|-----------|----------|
|       |      |        | $^{252}$ No                       |                  |           |          |
| SLy6  | 1.10 | 3.04   | $pp[521\downarrow,514\downarrow]$ | 1.16             | 0.99      | F,F+1    |
|       | 2.13 | 2.91   | $pp[521\downarrow,512\uparrow]$   | 2.11             | 0.95      | F,F+3    |
| SkM*  | 1.00 | 3.61   | $pp[521\downarrow,514\downarrow]$ | 1.05             | 0.97      | F,F+1    |
|       | 1.69 | 2.67   | $pp[521\downarrow,512\uparrow]$   | 1.61             | 0.94      | F,F+3    |
| SVbas | 1.19 | 2.73   | $pp[521\downarrow,514\downarrow]$ | 1.21             | 0.98      | F,F+1    |
|       | 1.93 | 2.43   | $pp[521\downarrow,512\uparrow]$   | 1.86             | 0.95      | F,F+3    |
|       |      |        | $^{254}$ No, $E_{\rm x}$ =0.987   | 7 Me             | V         |          |
| SLy6  | 1.11 | 2.41   | $pp[521\uparrow,514\downarrow]$   | 1.15             | 0.99      | F,F+1    |
|       | 1.89 | 1.78   | $nn[620\uparrow,613\uparrow]$     | 1.89             | 1.00      | F+1,F+3  |
| SkM*  | 1.01 | 3.24   | $pp[521\downarrow,514\downarrow]$ | 1.05             | 0.97      | F,F+1    |
|       | 1.41 | 2.15   | $nn[624\downarrow],620\uparrow]$  | 1.39             | 1.00      | F,F+1    |
| SVbas | 1.17 | 3.00   | $pp[521\downarrow,514\downarrow]$ | 1.20             | 0.99      | F,F+1    |
|       | 1.87 | 3.28   | $nn[620\uparrow,613\uparrow]$     | 1.98             | 0.48      | F+1,F+3  |
|       |      |        | $pp[521\downarrow, 512\uparrow]$  | 1.89             | 0.47      | F,F+3    |

The first 3+ state is purely 2qp

• All the forces predict for this state **the proton 2qp configuration**  $pp[521 \downarrow, 514 \downarrow]$ 

So, we see that effect of the hexadecapole residual interaction for 3<sup>+</sup> states in <sup>252,254</sup>No is negligible

The calculated 4+ states in <sup>252,254</sup>No have the energies and structure very similar to 3+ states. This is not surprising since both kinds of states are basically formed by the same proton 2qp configuration pp[521 ↓, 514 ↓] with |K1 - K2|=3 and K1 + K2=4.

#### Hexadecapole states with K<sup>n</sup> = 3<sup>+</sup> and 4<sup>+</sup>

| Force | E    | B(E43) | qq'                                | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|------|--------|------------------------------------|------------------|-----------|----------|
|       |      |        | $^{252}$ No                        |                  |           |          |
| SLy6  | 1.10 | 3.04   | $pp[521\downarrow, 514\downarrow)$ | 1.16             | 0.99      | F,F+1    |
|       | 2.13 | 2.91   | $pp[521\downarrow,512\uparrow]$    | 2.11             | 0.95      | F,F+3    |
| SkM*  | 1.00 | 3.61   | $pp[521\downarrow, 514\downarrow)$ | 1.05             | 0.97      | F,F+1    |
|       | 1.69 | 2.67   | $pp[521\downarrow,512\uparrow]$    | 1.61             | 0.94      | F,F+3    |
| SVbas | 1.19 | 2.73   | $pp[521\downarrow, 514\downarrow)$ | 1.21             | 0.98      | F,F+1    |
|       | 1.93 | 2.43   | $pp[521\downarrow,512\uparrow]$    | 1.86             | 0.95      | F,F+3    |
|       |      |        | $^{254}$ No, $E_x$ =0.987          | 7 Me             | V         |          |
| SLy6  | 1.11 | 2.41   | $pp[521\uparrow,514\downarrow)$    | 1.15             | 0.99      | F,F+1    |
|       | 1.89 | 1.78   | $nn[620\uparrow,613\uparrow]$      | 1.89             | 1.00      | F+1,F+3  |
| SkM*  | 1.01 | 3.24   | $pp[521\downarrow, 514\downarrow]$ | 1.05             | 0.97      | F,F+1    |
|       | 1.41 | 2.15   | $nn[624\downarrow],620\uparrow]$   | 1.39             | 1.00      | F,F+1    |
| SVbas | 1.17 | 3.00   | $pp[521\downarrow,514\downarrow]$  | 1.20             | 0.99      | F,F+1    |
|       | 1.87 | 3.28   | $nn[620\uparrow,613\uparrow]$      | 1.98             | 0.48      | F+1, F+3 |
|       |      |        | $pp[521\downarrow,512\uparrow]$    | 1.89             | 0.47      | F,F+3    |

| Force | E    | B(E44)          | qq'                                        | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|------|-----------------|--------------------------------------------|------------------|-----------|----------|
|       |      |                 | $^{252}$ No                                |                  |           |          |
| SLy6  | 1.16 | $5.5 \ 10^{-4}$ | $pp[521\downarrow,514\uparrow)$            | 1.16             | 1.00      | F,F+1    |
|       | 2.11 | 1.78            | $nn[\overline{624\downarrow,620\uparrow}]$ | 2.34             | 0.50      | F,F+2    |
|       |      |                 | $nn[622\uparrow,622\downarrow]$            | 2.41             | 0.42      | F-1,F+3  |
| SkM*  | 1.00 | 3.61            | $pp[521\downarrow, 514\downarrow)$         | 1.05             | 0.97      | F,F+1    |
|       | 1.69 | 2.67            | $pp[521\downarrow,512\uparrow]$            | 1.61             | 0.94      | F,F+3    |
| SVbas | 1.19 | 2.73            | $pp[521\downarrow, 514\downarrow)$         | 1.21             | 0.98      | F,F+1    |
|       | 1.93 | 2.43            | $pp[521\downarrow,512\uparrow]$            | 1.86             | 0.95      | F,F+3    |
|       |      |                 | $^{254}$ No, $E_x$ =0.987                  | 7 MeV            | V         |          |
| SLy6  | 1.16 | 0.07            | $pp[521\downarrow, 514\downarrow)$         | 1.15             | 1.00      | F,F+1    |
|       | 1.89 | $1 \ 10^{-4}$   | $nn[620\uparrow,613\uparrow]$              | 1.89             | 1.00      | F+1,F+3  |
| SkM*  | 1.01 | 3.24            | $pp[521\downarrow,514\downarrow]$          | 1.05             | 0.97      | F,F+1    |
|       | 1.41 | 2.15            | $nn[624\downarrow],620\uparrow]$           | 1.39             | 1.00      | F,F+1    |
| SVbas | 1.17 | 3.00            | $pp[521\downarrow,514\downarrow)$          | 1.20             | 0.99      | F,F+1    |
|       | 1.87 | 3.28            | $nn[620\uparrow,613\uparrow]$              | 1.98             | 0.48      | F+1,F+3  |
|       |      |                 | $pp[521\downarrow,512\uparrow]$            | 1.89             | 0.47      | F,F+3    |

The first 3+ state is purely 2qp

• All the forces predict for this state **the proton 2qp configuration**  $pp[521 \downarrow, 514 \downarrow]$ 

So, we see that effect of the hexadecapole residual interaction for 3<sup>+</sup> states in <sup>252,254</sup>No is negligible

The calculated 4+ states in <sup>252,254</sup>No have the energies and structure very similar to 3+ states. This is not surprising since both kinds of states are basically formed by the same proton 2qp configuration pp[521 ↓, 514 ↓] with |K1 - K2|=3 and K1 + K2=4.

- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2<sup>-</sup> state in <sup>252</sup>No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2<sup>-</sup> state is the lowest among the octupole excitations in <sup>252</sup>No. We get the same result for SLy6 but not for SkM\* and SVbas.
- In <sup>254</sup>No, our calculations for the first 2<sup>-</sup> stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

| Force | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                              | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                                        | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|--------------------|------|--------|----------------------------------|------------------|-----------|----------|--------------------|------|--------|--------------------------------------------|------------------|-----------|----------|
|       |                    |      |        | $^{252}$ No                      |                  |           |          |                    |      |        | $^{254}$ No                                |                  |           |          |
| SLy6  | 0-                 | 1.24 | 9.1    | $pp[514\downarrow, 633\uparrow]$ | 1.35             | 0.93      | F+1,F-1  | 0-                 | 1.25 | 11.2   | $pp[514\downarrow, 633\uparrow]$           | 1.38             | 0.87      | F+1,F-1  |
|       | 1-                 | 1.41 | 1.5    | $nn[734\uparrow,624\downarrow]$  | 1.32             | 0.98      | F+1,F    | 1-                 | 1.54 | 8.4    | $nn[734\uparrow,613\uparrow]$              | 1.78             | 0.82      | F,F+3    |
|       | $2^{-}$            | 0.95 | 11.5   | $nn[734\uparrow,622\uparrow]$    | 1.30             | 0.92      | F+1,F-1  | $2^{-}$            | 2.12 | 0.6    | $nn[734\uparrow,622\uparrow]$              | 2.13             | 0.94      | F,F-1    |
|       | 3-                 | 1.35 | 0.1    | $pp[633\uparrow,521\downarrow]$  | 1.35             | 1.00      | F-1,F    | $3^{-}$            | 1.28 | 0.03   | $nn[734\uparrow,622\downarrow]$            | 1.213            | 0.94      | F,F+2    |
| SkM*  | 0-                 | 1.35 | 20.7   | $pp[514\downarrow, 633\uparrow]$ | 1.52             | 0.79      | F+1, F-1 | 0-                 | 1.37 | 16.3   | $pp[514\downarrow, 633\uparrow]$           | 1.51             | 0.84      | F+1,F-1  |
|       | 1-                 | 1.16 | 2.2    | $nn[734\uparrow,624\downarrow]$  | 1.20             | 0.97      | F,F+1    | 1-                 | 1.47 | 1.5    | $pp[624\uparrow,514\downarrow]$            | 1.48             | 0.95      | F+2,F+1  |
|       | $2^{-}$            | 1.46 | 6.2    | $nn[734\uparrow,622\uparrow]$    | 1.61             | 0.92      | F,F-1    | $2^{-}$            | 1.80 | 3.7    | $nn[725\uparrow,624\downarrow]$            | 1.71             | 0.85      | F+3,F    |
|       | $3^{-}$            | 1.48 | 0.05   | $pp[633\uparrow,521\downarrow]$  | 1.48             | 1.00      | F-2,F    | $3^{-}$            | 1.48 | 0.04   | $pp[633\uparrow,521\downarrow]$            | 1.48             | 1.00      | F-1,F    |
| SVbas | 0-                 | 1.32 | 7.7    | $pp[514\downarrow, 633\uparrow]$ | 1.42             | 0.92      | F+1, F-1 | 0-                 | 1.30 | 7.4    | $pp[514\downarrow, 633\uparrow]$           | 1.40             | 0.92      | F+1,F-1  |
|       | 1-                 | 1.71 | 6.1    | $nn[734\uparrow,624\downarrow]$  | 1.75             | 0.77      | F+1,F    | 1-                 | 1.72 | 12.3   | $nn[734\uparrow,613\uparrow]$              | 2.03             | 0.42      | F,F+3    |
|       |                    |      |        | $pp[633\uparrow,512\uparrow]$    | 2.06             | 0.10      | F-1,F+3  |                    |      |        | $pp[633\uparrow,512\uparrow]$              | 2.09             | 0.30      | F-1,F+3  |
|       |                    |      |        |                                  |                  |           |          |                    |      | -      | $pp[624\uparrow,514\downarrow]$            | 1.86             | 0.10      | F+2,F+1  |
|       | $2^{-}$            | 1.62 | 12.6   | $nn[734\downarrow, 622\uparrow]$ | 1.9              | 0.72      | F+1,F-1  | $2^{-}$            | 1.90 | 14.5   | $pp[633\uparrow,521\downarrow]$            | 2.15             | 0.44      | F-1,F    |
|       |                    |      | _      | $pp[633\uparrow,521\uparrow]$    | 2.15             | 0.13      | F-1,F-2  |                    |      |        | $nn[734\uparrow,622\uparrow]$              | 2.33             | 0.26      | F,F-2    |
|       | 3-                 | 1.40 | 0.06   | $pp[633\uparrow,521\downarrow]$  | 1.40             | 1.00      | F-1,F    | 3-                 | 1.39 | 0.05   | $pp[\overline{633\uparrow},521\downarrow]$ | 1.40             | 1.00      | F-1,F    |

- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2<sup>-</sup> state in <sup>252</sup>No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2<sup>-</sup> state is the lowest among the octupole excitations in <sup>252</sup>No. We get the same result for SLy6 but not for SkM\* and SVbas.
- In <sup>254</sup>No, our calculations for the first 2<sup>-</sup> stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

| Force | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                                        | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                                                   | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|--------------------|------|--------|--------------------------------------------|------------------|-----------|----------|--------------------|------|--------|-------------------------------------------------------|------------------|-----------|----------|
|       |                    |      |        | $^{252}$ No                                |                  |           |          |                    |      |        | $^{254}$ No                                           |                  |           |          |
| SLy6  | 0-                 | 1.24 | 9.1    | $pp[514\downarrow, 633\uparrow]$           | 1.35             | 0.93      | F+1,F-1  | $0^{-}$            | 1.25 | 11.2   | $pp[514\downarrow, 633\uparrow]$                      | 1.38             | 0.87      | F+1,F-1  |
|       | 1-                 | 1.41 | 1.5    | $nn[734\uparrow,624\downarrow]$            | 1.32             | 0.98      | F+1,F    | 1-                 | 1.54 | 8.4    | $nn[734\uparrow,613\uparrow]$                         | 1.78             | 0.82      | F,F+3    |
|       | $(2^{-})$          | 0.95 | 11.5   | $nn[734\uparrow,622\uparrow]$              | 1.30             | 0.92      | F+1,F-1  | $2^{-}$            | 2.12 | 0.6    | $nn[734\uparrow,622\uparrow]$                         | 2.13             | 0.94      | F,F-1    |
|       | 3-                 | 1.35 | 0.1    | $pp[633\uparrow,521\downarrow]$            | 1.35             | 1.00      | F-1,F    | $3^{-}$            | 1.28 | 0.03   | $nn[734\uparrow,622\downarrow]$                       | 1.213            | 0.94      | F,F+2    |
| SkM*  | 0-                 | 1.35 | 20.7   | $pp[514\downarrow, 633\uparrow]$           | 1.52             | 0.79      | F+1, F-1 | 0-                 | 1.37 | 16.3   | $pp[514\downarrow, 633\uparrow]$                      | 1.51             | 0.84      | F+1,F-1  |
|       | 1-                 | 1.16 | 2.2    | $nn[734\uparrow,624\downarrow]$            | 1.20             | 0.97      | F,F+1    | 1-                 | 1.47 | 1.5    | $pp[624\uparrow,514\downarrow]$                       | 1.48             | 0.95      | F+2,F+1  |
|       | $2^{-}$            | 1.46 | 6.2    | $nn[734\uparrow,622\uparrow]$              | 1.61             | 0.92      | F,F-1    | $2^{-}$            | 1.80 | 3.7    | $nn[725\uparrow,624\downarrow]$                       | 1.71             | 0.85      | F+3,F    |
|       | $3^{-}$            | 1.48 | 0.05   | $pp[633\uparrow,521\downarrow]$            | 1.48             | 1.00      | F-2,F    | $3^{-}$            | 1.48 | 0.04   | $pp[633\uparrow,521\downarrow]$                       | 1.48             | 1.00      | F-1,F    |
| SVbas | 0-                 | 1.32 | 7.7    | $pp[514\downarrow, 633\uparrow]$           | 1.42             | 0.92      | F+1, F-1 | 0-                 | 1.30 | 7.4    | $pp[514\downarrow, 633\uparrow]$                      | 1.40             | 0.92      | F+1,F-1  |
|       | 1-                 | 1.71 | 6.1    | $nn[734\uparrow,624\downarrow]$            | 1.75             | 0.77      | F+1,F    | 1-                 | 1.72 | 12.3   | $nn[734\uparrow,613\uparrow]$                         | 2.03             | 0.42      | F,F+3    |
|       |                    |      |        | $pp[633\uparrow,512\uparrow]$              | 2.06             | 0.10      | F-1,F+3  |                    |      |        | $pp[633\uparrow,512\uparrow]$                         | 2.09             | 0.30      | F-1,F+3  |
|       |                    |      |        |                                            |                  |           |          |                    |      | -      | $pp[624\uparrow,514\downarrow]$                       | 1.86             | 0.10      | F+2,F+1  |
|       | $2^{-}$            | 1.62 | 12.6   | $nn[734\downarrow, 622\uparrow]$           | 1.9              | 0.72      | F+1,F-1  | $2^{-}$            | 1.90 | 14.5   | $pp[633\uparrow,521\downarrow]$                       | 2.15             | 0.44      | F-1,F    |
|       |                    |      | -      | $pp[633\uparrow,521\uparrow]$              | 2.15             | 0.13      | F-1,F-2  |                    |      | -      | $nn[734\uparrow,622\uparrow]$                         | 2.33             | 0.26      | F,F-2    |
|       | $3^{-}$            | 1.40 | 0.06   | $pp[\overline{633\uparrow},521\downarrow]$ | 1.40             | 1.00      | F-1,F    | $3^{-}$            | 1.39 | 0.05   | $pp[\overline{633\uparrow},52\overline{1\downarrow}]$ | 1.40             | 1.00      | F-1,F    |

- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2<sup>-</sup> state in <sup>252</sup>No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2<sup>-</sup> state is the lowest among the octupole excitations in <sup>252</sup>No. We get the same result for SLy6 but not for SkM\* and SVbas.
- In <sup>254</sup>No, our calculations for the first 2<sup>-</sup> stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

| Force | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                                        | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                                        | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |  |
|-------|--------------------|------|--------|--------------------------------------------|------------------|-----------|----------|--------------------|------|--------|--------------------------------------------|------------------|-----------|----------|--|
|       |                    |      |        | $^{252}$ No                                |                  |           |          | <sup>254</sup> No  |      |        |                                            |                  |           |          |  |
| SLy6  | 0-                 | 1.24 | 9.1    | $pp[514\downarrow, 633\uparrow]$           | 1.35             | 0.93      | F+1,F-1  | 0-                 | 1.25 | 11.2   | $pp[514\downarrow, 633\uparrow]$           | 1.38             | 0.87      | F+1,F-1  |  |
|       | 1-                 | 1.41 | 1.5    | $nn[734\uparrow,624\downarrow]$            | 1.32             | 0.98      | F+1,F    | 1-                 | 1.54 | 8.4    | $nn[734\uparrow,613\uparrow]$              | 1.78             | 0.82      | F,F+3    |  |
|       | $2^{-}$            | 0.95 | 11.5   | $nn[734\uparrow,622\uparrow]$              | 1.30             | 0.92      | F+1,F-1  | $(2^{-})$          | 2.12 | 0.6    | $nn[734\uparrow,622\uparrow]$              | 2.13             | 0.94      | F,F-1    |  |
|       | 3-                 | 1.35 | 0.1    | $pp[633\uparrow,521\downarrow]$            | 1.35             | 1.00      | F-1,F    | $3^{-}$            | 1.28 | 0.03   | $nn[734\uparrow,622\downarrow]$            | 1.213            | 0.94      | F,F+2    |  |
| SkM*  | 0-                 | 1.35 | 20.7   | $pp[514\downarrow, 633\uparrow]$           | 1.52             | 0.79      | F+1, F-1 | 0-                 | 1.37 | 16.3   | $pp[514\downarrow, 633\uparrow]$           | 1.51             | 0.84      | F+1,F-1  |  |
|       | 1-                 | 1.16 | 2.2    | $nn[734\uparrow,624\downarrow]$            | 1.20             | 0.97      | F,F+1    | 1-                 | 1.47 | 1.5    | $pp[624\uparrow,514\downarrow]$            | 1.48             | 0.95      | F+2,F+1  |  |
|       | $2^{-}$            | 1.46 | 6.2    | $nn[734\uparrow,622\uparrow]$              | 1.61             | 0.92      | F,F-1    | $2^{-}$            | 1.80 | 3.7    | $nn[725\uparrow,624\downarrow]$            | 1.71             | 0.85      | F+3,F    |  |
|       | $3^{-}$            | 1.48 | 0.05   | $pp[633\uparrow,521\downarrow]$            | 1.48             | 1.00      | F-2,F    | $ 3^-$             | 1.48 | 0.04   | $pp[633\uparrow,521\downarrow]$            | 1.48             | 1.00      | F-1,F    |  |
| SVbas | 0-                 | 1.32 | 7.7    | $pp[514\downarrow, 633\uparrow]$           | 1.42             | 0.92      | F+1, F-1 | 0-                 | 1.30 | 7.4    | $pp[514\downarrow, 633\uparrow]$           | 1.40             | 0.92      | F+1,F-1  |  |
|       | 1-                 | 1.71 | 6.1    | $nn[734\uparrow,624\downarrow]$            | 1.75             | 0.77      | F+1,F    | 1-                 | 1.72 | 12.3   | $nn[734\uparrow,613\uparrow]$              | 2.03             | 0.42      | F,F+3    |  |
|       |                    |      |        | $pp[633\uparrow,512\uparrow]$              | 2.06             | 0.10      | F-1,F+3  |                    |      |        | $pp[633\uparrow,512\uparrow]$              | 2.09             | 0.30      | F-1,F+3  |  |
|       |                    |      |        |                                            |                  |           |          |                    |      | -      | $pp[624\uparrow,514\downarrow]$            | 1.86             | 0.10      | F+2,F+1  |  |
|       | $2^{-}$            | 1.62 | 12.6   | $nn[734\downarrow, 622\uparrow]$           | 1.9              | 0.72      | F+1,F-1  | $2^{-}$            | 1.90 | 14.5   | $pp[633\uparrow,521\downarrow]$            | 2.15             | 0.44      | F-1,F    |  |
|       |                    |      | _      | $pp[633\uparrow,521\uparrow]$              | 2.15             | 0.13      | F-1,F-2  |                    |      | _      | $nn[734\uparrow,622\uparrow]$              | 2.33             | 0.26      | F,F-2    |  |
|       | $3^{-}$            | 1.40 | 0.06   | $pp[\overline{633\uparrow},521\downarrow]$ | 1.40             | 1.00      | F-1,F    | 3-                 | 1.39 | 0.05   | $pp[\overline{633\uparrow},521\downarrow]$ | 1.40             | 1.00      | F-1,F    |  |

- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2<sup>-</sup> state in <sup>252</sup>No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2<sup>-</sup> state is the lowest among the octupole excitations in <sup>252</sup>No. We get the same result for SLy6 but not for SkM\* and SVbas.
- In <sup>254</sup>No, our calculations for the first 2<sup>-</sup> stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

| Force | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                              | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct | $\mathbf{K}^{\pi}$ | E    | B(E3K) | qq'                                        | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |
|-------|--------------------|------|--------|----------------------------------|------------------|-----------|----------|--------------------|------|--------|--------------------------------------------|------------------|-----------|----------|
|       |                    |      |        | $^{252}$ No                      |                  |           |          | <sup>254</sup> No  |      |        |                                            |                  |           |          |
| SLy6  | 0-                 | 1.24 | 9.1    | $pp[514\downarrow, 633\uparrow]$ | 1.35             | 0.93      | F+1,F-1  | 0-                 | 1.25 | 11.2   | $pp[514\downarrow, 633\uparrow]$           | 1.38             | 0.87      | F+1,F-1  |
|       | 1-                 | 1.41 | 1.5    | $nn[734\uparrow,624\downarrow]$  | 1.32             | 0.98      | F+1,F    | 1-                 | 1.54 | 8.4    | $nn[734\uparrow,613\uparrow]$              | 1.78             | 0.82      | F,F+3    |
|       | $2^{-}$            | 0.95 | 11.5   | $nn[734\uparrow,622\uparrow]$    | 1.30             | 0.92      | F+1,F-1  | $2^{-}$            | 2.12 | 0.6    | $nn[734\uparrow,622\uparrow]$              | 2.13             | 0.94      | F,F-1    |
|       | 3-                 | 1.35 | 0.1    | $pp[633\uparrow,521\downarrow]$  | 1.35             | 1.00      | F-1,F    | 3-                 | 1.28 | 0.03   | $nn[734\uparrow,622\downarrow]$            | 1.213            | 0.94      | F,F+2    |
| SkM*  | 0-                 | 1.35 | 20.7   | $pp[514\downarrow, 633\uparrow]$ | 1.52             | 0.79      | F+1, F-1 | 0-                 | 1.37 | 16.3   | $pp[514\downarrow, 633\uparrow]$           | 1.51             | 0.84      | F+1,F-1  |
|       | 1-                 | 1.16 | 2.2    | $nn[734\uparrow,624\downarrow]$  | 1.20             | 0.97      | F,F+1    | 1-                 | 1.47 | 1.5    | $pp[624\uparrow,514\downarrow]$            | 1.48             | 0.95      | F+2,F+1  |
|       | $2^{-}$            | 1.46 | 6.2    | $nn[734\uparrow,622\uparrow]$    | 1.61             | 0.92      | F,F-1    | $2^{-}$            | 1.80 | 3.7    | $nn[725\uparrow,624\downarrow]$            | 1.71             | 0.85      | F+3,F    |
|       | $3^{-}$            | 1.48 | 0.05   | $pp[633\uparrow,521\downarrow]$  | 1.48             | 1.00      | F-2,F    | $3^{-}$            | 1.48 | 0.04   | $pp[633\uparrow,521\downarrow]$            | 1.48             | 1.00      | F-1,F    |
| SVbas | 0-                 | 1.32 | 7.7    | $pp[514\downarrow, 633\uparrow]$ | 1.42             | 0.92      | F+1, F-1 | 0-                 | 1.30 | 7.4    | $pp[514\downarrow, 633\uparrow]$           | 1.40             | 0.92      | F+1,F-1  |
|       | 1-                 | 1.71 | 6.1    | $nn[734\uparrow,624\downarrow]$  | 1.75             | 0.77      | F+1,F    | 1-                 | 1.72 | 12.3   | $nn[734\uparrow,613\uparrow]$              | 2.03             | 0.42      | F,F+3    |
|       |                    |      |        | $pp[633\uparrow,512\uparrow]$    | 2.06             | 0.10      | F-1,F+3  |                    |      |        | $pp[633\uparrow,512\uparrow]$              | 2.09             | 0.30      | F-1,F+3  |
|       |                    |      |        |                                  |                  |           |          |                    |      | -      | $pp[624\uparrow,514\downarrow]$            | 1.86             | 0.10      | F+2,F+1  |
|       | $2^{-}$            | 1.62 | 12.6   | $nn[734\downarrow, 622\uparrow]$ | 1.9              | 0.72      | F+1,F-1  | $2^{-}$            | 1.90 | 14.5   | $pp[633\uparrow,521\downarrow]$            | 2.15             | 0.44      | F-1,F    |
|       |                    |      | _      | $pp[633\uparrow,521\uparrow]$    | 2.15             | 0.13      | F-1,F-2  |                    |      |        | $nn[734\uparrow,622\uparrow]$              | 2.33             | 0.26      | F,F-2    |
|       | 3-                 | 1.40 | 0.06   | $pp[633\uparrow,521\downarrow]$  | 1.40             | 1.00      | F-1,F    | 3-                 | 1.39 | 0.05   | $pp[\overline{633\uparrow},521\downarrow]$ | 1.40             | 1.00      | F-1,F    |

![](_page_22_Figure_0.jpeg)

- The band of the ground state is slightly compressed
- The band, which built on state 2<sup>-</sup> is described well and the two others bands are also described satisfactorily

![](_page_23_Figure_0.jpeg)

We also describing the 3 experimental bands quite well and working to carry out the more detailed analyzes about the band starting with 8<sup>-</sup>

## Conclusion

- The low-energy spectra of the Nobelium chain were studied within the framework of three Skyrme forces (SLy6, SkM\*, SVbas) with different types of pairing
- It was shown that for the ground state bands of <sup>250-260</sup>No the irregularity occurs in the region <sup>252-254</sup>No
- For <sup>252,254</sup>No isotopes this irregularity associated with pairing effect and evolution of the single-particle spectrum
- All three Skyrme forces maintain this irregularity, despite different types of neutron pairing (volume/surface)
- The theoretically obtained bands for the lower spectrum for <sup>252, 254</sup>No are in good agreement with experiment
- We also make the predictions about low-energy bands of different multipolarity  $(K^{\Pi} = 0^+, 2^+, 3^+, 0^-, 1^-, 2^-, 8^-)$ , some of then can be found experimentally for <sup>252,254</sup>No

# Thank you for your attention!

### The irregularity in <sup>252</sup>No and <sup>254</sup>No at low-energy spectrum

![](_page_25_Figure_1.jpeg)

- to analyze the occurrence of the irregularity for

- to make predictions not only for the ground state energy band, but for other bands too

| Force | E    | B(E22) | qq'                                | $\epsilon_{qq'}$ | $N_{qq'}$ | F-struct |  |  |  |
|-------|------|--------|------------------------------------|------------------|-----------|----------|--|--|--|
|       |      |        | $^{252}$ No                        | _                |           |          |  |  |  |
| SLy6  | 1.58 | 3.87   | $nn[622\uparrow,620\uparrow]$      | 2.33             | 0.39      | F-1,F+2  |  |  |  |
|       |      |        | $pp[521\downarrow,521\uparrow]$    | 2.06             | 0.32      | F,F-2    |  |  |  |
|       |      |        | $nn[624\downarrow,622\downarrow]$  | 2.42             | 0.21      | F,F+3    |  |  |  |
|       | 2.08 | -      | $pp[514\downarrow], 521\uparrow]$  | 2.06             | 1.00      | F+1,F-2  |  |  |  |
| SkM*  | 1.70 | 0.06   | $pp[512\uparrow,521\downarrow]$    | 1.61             | 0.99      | F+3,F    |  |  |  |
|       | 1.78 | -      | $nn[622\uparrow],620\uparrow]$     | 2.28             | 0.35      | F-1,F+2  |  |  |  |
|       |      |        | $nn[624\downarrow],622\downarrow]$ | 2.14             | 0.29      | F+1,F+3  |  |  |  |
|       |      |        | $pp[514\downarrow], 521\uparrow]$  | 2.06             | 1.00      | F+1,F-2  |  |  |  |
| SVbas | 1.62 | 2.72   | $pp[521\uparrow],521\downarrow]$   | 1.95             | 0.38      | F-2,F    |  |  |  |
|       |      |        | $nn[622\uparrow,620\uparrow]$      | 2.48             | 0.29      | F-1,F+2  |  |  |  |
|       |      |        | $nn[624\downarrow],622\downarrow]$ | 2.24             | 0.19      | F,F+3    |  |  |  |
|       | 1.89 | -      | $pp[512\uparrow,521\downarrow]$    | 1.86             | 0.99      | F+3,F    |  |  |  |
|       |      |        | <sup>254</sup> No                  |                  |           |          |  |  |  |
| SLy6  | 1.31 | 0.17   | $nn[622\uparrow,620\uparrow]$      | 1.32             | 0.97      | F-1,F+1  |  |  |  |
|       | 1.53 | -      | $nn[622\uparrow,620\uparrow]$      | 2.24             | 0.42      | F-1,F+1  |  |  |  |
|       |      |        | $pp[521\uparrow],521\downarrow]$   | 2.05             | 0.27      | F-2,F    |  |  |  |
|       |      |        | $nn[624\downarrow],622\downarrow]$ | 2.39             | 0.20      | F-2,F+2  |  |  |  |
| SkM*  | 1.32 | 2.62   | $nn[624\downarrow,622\downarrow]$  | 1.63             | 0.60      | F,F+2    |  |  |  |
|       |      |        | $nn[622\downarrow],620\uparrow]$   | 1.60             | 0.18      | F+2,F+1  |  |  |  |
|       |      |        | $nn[622\uparrow],620\uparrow]$     | 2.20             | 0.11      | F-2,F+1  |  |  |  |
|       | 1.62 | -      | $nn[622\downarrow],620\uparrow]$   | 1.60             | 0.80      | F-2,F+1  |  |  |  |
|       |      |        | $nn[624\downarrow,622\downarrow]$  | 1.63             | 019       | F,F+2    |  |  |  |
| SVbas | 1.45 | 4.46   | $nn[622\downarrow,620\uparrow]$    | 1.77             | 0.40      | F+2,F+1  |  |  |  |
|       |      |        | $pp[521\uparrow],521\downarrow]$   | 1.95             | 0.20      | F-2,F    |  |  |  |
|       |      |        | $nn[624\downarrow],622\downarrow]$ | 2.15             | 0.17      | F-1,F+2  |  |  |  |
|       | 1.87 | -      | $nn[622\downarrow],620\uparrow]$   | 1.77             | 0.56      | F-1,F+2  |  |  |  |
|       |      |        | $pp[521\uparrow],521\downarrow]$   | 1.95             | 0.21      | F-2,F    |  |  |  |
|       |      |        | $nn[622\uparrow,620\uparrow]$      | 2.28             | 0.14      | F+2,F+1  |  |  |  |

• In most of the cases, if the first state is collective, then the next one is 2qp and vice versa, but:

- The first K<sup>n</sup> = 2<sup>+</sup> states are <u>γ-vibrational collective</u> in <sup>252</sup>No (SLy6, SV-bas) and in <sup>254</sup>No (SkM\*, SV-bas)
- Instead, the first 2<sup>+</sup> states are <u>purely 2qp</u> in <sup>252</sup>No (SkM\*) and in <sup>254</sup>No (SLy6)

Anyway, all the calculated 2+ lie above the observed 2-(<sup>252</sup>No) and 3+ (<sup>252</sup>No) K-isomers

- We know only IBM calculations [A. D. Efimov and I. N. Izosimov, Phys. Atom. Nucl. 84, 660 (2021)]; [A. D. Efimov and I. N. Izosimov, JINR-E6-2022-19 (2022)]
- In contrast to our results, calculations predict K<sup>n</sup> = 2<sup>+</sup> states at 1.09 MeV (<sup>252</sup>No) and 0.94 MeV (<sup>254</sup>No).

To estimate the true relevance of various theoretical results for No isotopes, the experimental data are necessary.

#### States K<sup>n</sup> = 2

TABLE X. The lowest SLy6 neutron and proton 2qp configurations  $K = K_1 + K_2$  and  $K = |K_1 + K_2|$  in <sup>252,254</sup>No.

| $\epsilon_{qq'}$  | qq'                               | F-struct | $K_1 + K_2$       | $K_1$ - $K_2$         |  |  |  |  |  |  |
|-------------------|-----------------------------------|----------|-------------------|-----------------------|--|--|--|--|--|--|
| <sup>252</sup> No |                                   |          |                   |                       |  |  |  |  |  |  |
| 1.16              | $pp[521\downarrow,514\downarrow]$ | F,F+1    | $\underline{4^+}$ | $\underline{3^+}$     |  |  |  |  |  |  |
| 1.35              | $pp[633\uparrow,514\downarrow]$   | F-1,F+1  | $7^{-}$           | <u>0</u> –            |  |  |  |  |  |  |
| 1.35              | $pp[633\uparrow,521\downarrow]$   | F-1,F+1  | $4^{-}$           | $\underline{3^{-}}$   |  |  |  |  |  |  |
| 2.06              | $pp[521\uparrow,521\downarrow]$   | F-2,F    | $\underline{2^+}$ | 1+                    |  |  |  |  |  |  |
| 2.25              | $pp[521\uparrow,633\uparrow]$     | F-2, F-1 | $5^{-}$           | $\underline{2^{-}}$   |  |  |  |  |  |  |
| 2.30              | $pp[633\uparrow,512\uparrow]$     | F-1,F+3  | $6^{-}$           | <u>1</u> <sup>-</sup> |  |  |  |  |  |  |
| 1.30              | $nn[734\uparrow,622\uparrow]$     | F,F-2    | $7^{-}$           | 2_                    |  |  |  |  |  |  |
| 1.32              | $nn[624\downarrow,734\uparrow]$   | F,F+1    | <u>8</u> -        | <u>1</u> -            |  |  |  |  |  |  |
| 2.08              | $nn[624\downarrow,743\uparrow]$   | F,F-2    | $7^{-}$           | <u>0</u>              |  |  |  |  |  |  |
| 2.33              | $nn[622\uparrow,620\uparrow]$     | F-1,F+2  | $\underline{3^+}$ | $\underline{2^+}$     |  |  |  |  |  |  |
| 2.34              | $nn[624\downarrow,620\uparrow]$   | F,F+2    | $\underline{4^+}$ | 3+                    |  |  |  |  |  |  |
|                   | <sup>254</sup> No                 |          |                   |                       |  |  |  |  |  |  |
| 1.15              | $pp[521\downarrow,514\downarrow]$ | F,F+1    | $\underline{4^+}$ | $\underline{3^+}$     |  |  |  |  |  |  |
| 1.38              | $pp[633\uparrow,514\downarrow]$   | F-1,F+1  | $7^{-}$           | <u>0</u>              |  |  |  |  |  |  |
| 1.38              | $pp[633\uparrow,521\downarrow]$   | F-1,F    | $4^{-}$           | <u>3</u>              |  |  |  |  |  |  |
| 2.05              | $pp[521\uparrow,521\downarrow]$   | F-2,F    | $\underline{2^+}$ | 1+                    |  |  |  |  |  |  |
| 2.27              | $pp[521\uparrow,633\uparrow]$     | F-2, F-1 | $5^{-}$           | $\underline{2^{-}}$   |  |  |  |  |  |  |
| 2.43              | $pp[633\uparrow,512\uparrow]$     | F-1,F+3  | $6^{-}$           | <u>1</u> <sup>-</sup> |  |  |  |  |  |  |
| 1.21              | $nn[734\uparrow,622\downarrow]$   | F,F+2    | $6^{-}$           | 3-                    |  |  |  |  |  |  |
| 1.32              | $nn[622\uparrow,620\uparrow]$     | F-1,F+1  | $\underline{2^+}$ | 1+                    |  |  |  |  |  |  |
| 1.78              | $nn[734\uparrow,613\uparrow]$     | F,F+3    | 8-                | <u>1</u> -            |  |  |  |  |  |  |
| 1.89              | $nn[620\uparrow,613\uparrow]$     | F+1,F+3  | $\underline{4^+}$ | $\underline{3^+}$     |  |  |  |  |  |  |
| 2.13              | $nn[622\uparrow,734\uparrow]$     | F-1,F    | 7-                | $\underline{2^-}$     |  |  |  |  |  |  |
| 2.17              | $nn[734\uparrow,615\downarrow]$   | F,F+5    | $9^{-}$           | <u>0</u> –            |  |  |  |  |  |  |

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)