Determination of purity and efficiency of the clustering algorithm of neutron reconstruction with the HGND at the BM@N experiment

Arseniy Shabanov, INR RAS for the HGND team

arseniy.shabanov@phystech.edu

AYSS-2024

29.10.2024

The work has been supported by the Russian Scientific Foundation grant №22-12-00132

Outline

- BM@N
- Highly Granular Neutron Detector
- Reconstruction of neutrons
 - Cluster recognition
 - Selection of neutron clusters
- Determination of efficiency and purity
- Energy reconstruction
- Conclusions

BM@N experiment

Baryonic Matter at Nuclotron – fixed target experiment in JINR (Dubna, Russia), aimed at studying of baryonic matter at high densities and relatively low temperatures.

- Ion beams from p to Au
- Kinetic energies 1-6 A GeV
- Data accuisition rate $\sim 5.10^4$ events/s

Highly Granular Neutron Detector (HGND)

The new detector is being constructed to extend BM@N capabilities in measurement of neutrons

HGND

Structure of HGND

- Two parts
- 8 layers of scintillator 11x11 cells
 - 7 layers of Cu convertor in between of scintillator layers
 - MPPC connected directly to scintillator
 - Time resolution ~130 ps

Reconstruction of neutrons

- The particles traversing HGND can fire many cells in one event → need to merge fired cells into clusters
- Presence of background (charged, photons) → need to select neutron clusters
- Energy and direction reconstruction → search for the cell closest to initial neutron hit ("head of cluster")
- Implementation of the algorithm into BmnRoot: BmnNdetClusterFinder::FindClusters()

Example of an event in HGND

- all fired cells
- cells fired by the products of neutron hit

7

cells recognized as neutron cluster

Cluster recognition

- Cluster is a set of neighbouring fired cells with close timestamps
- Algorithm loops over fired cells and checks if there are fired cells nearby
- BmnNdetClusterFinder::Fi ndClusters()

Selection of clusters

- Rejection of noise: deposited energy > 3 MeV
- Rejection of charged particles with veto on 1st layer
- Rejection of gammas with veto on 2nd layer
- Rejection of light particles (γ , e) with β <1 cut

• The clusters are combined into larger clusters if they have close timestamps (within time resolution of HGND)

Rejection of charged particles

Charged particles fire 1st layer

If cluster contains any cells of **1st layer**, the cluster is **rejected**

Rejection of photons

don't fire 1st layer,

do fire 2nd layer

If cluster contains any cells of **2nd layer**, the cluster is **rejected**

for each cell of a cluster we can define **velocity** v = d/t d – distance from cell to target t – time of flight Head of a **Head** of a cluster – cell with the cluster highest reconstructed velocity primary Track secondary Kinetic energy: Tracks $T_{n} = m_{n}c^{2}\left(\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}-1\right)$ 12

Efficiency and purity

- **N match** number of clusters which head cell is fired by a particle produced by a neutron
- N simulated number of neutrons crossing HGND volume
- N reconstructed number of clusters recognized as neutrons

- DCM QGSM SMM generator
- Bi+Bi at $\sqrt{s_{NN}}$ = 3.26 AGeV (3.8 AGeV beam energy)
- Full BM@N geometry
- Distance from target to HGND 700cm
- 10⁶ events
- Time resolution of HGND cells 130 ps

Alternative algorithm

Conclusions

- The method of reconstruction of neutrons in HGND has been developed
- Efficiency and purity are determined with Monte-Carlo simulation
- Efficiency is equal for primary and secondary neutrons
- Purity is lower for primary neutrons at low Tn
- Algorithm can be optimized to increase either Efficiency or Purity

Backup slides

Veto on 1st, 2nd layers, cut β <1

All clusters containing cells of 1 or 2 layer or $\beta=1$ are rejected

If at least 1 cluster evade rejection, the histogram is filled

γ-quanta, electrons are suppressed

Kinetic energy reconstruction for primary neutrons

20

Number of neutrons in event

