A MOdular NEutron Spectrometer (MONES) for studies with radioactive beams at ACCULINNA-2 fragment separator

Anh Mai

ACCULINNA group, Flerov Laboratory of Nuclear Reactions

28th International Scientific Conference of Young Scientists and Specialists 28 October - 01 November 2024, JINR

Main areas of interest at FLNR at nuclide chart

Beam production @ ACCULINNA-2

Beam production @ ACCULINNA-2

 $^{11}{\rm B^{5+}}$ @ 32 AMeV + 1 mm $^{9}{\rm Be} \rightarrow$ ACCULINNA-2 $\rightarrow \sim$ 90% and 10 5 pps $^{8}{\rm He}$ @ 26 AMeV

Reaction chamber @ final focal plane F5

Reaction chamber in the experiment

Neutron detection

Neutron-matter interaction cross-sections

in accordance with different neutron energies

Neutron detection

Neutron-matter interaction cross-sections

in accordance with different neutron energies

The characteristics of some common organic scintillators.

Formula	Density	Decay	Wavelength	Light output
	(g/cm^3)	time(ns)	(nm)	relatively %
Anthracene	1.25	30	445	100
C ₁₄ H ₁₀ [1]				
Stilbene	1 16	6	410	56
C ₁₄ H ₁₂ [1]	1.10	0	410	50
Liquid BC501A [2]	0 001	3.2	425	78
(or NE213) [^{2]}	0.901	J.2	425	70
Plastic EJ276 [3]	1 806	13	425	56
(or EJ299-33A) ^[3]	1.090	15	425	50

[1] R.K. Svenk (1956), Usp. Fiz. Nauk, vol. 58, no. 3, p. 519.

[2] http://www.eljentechnology.com/products/plastic-scintillators/ej-299-33a-ej-299-34.

 [3] https://www.crystals.saint-gobain.com/sites/hps-mac3-cma-crystals/files/2021-09/BC501-501A-519-Data-Sheet.pdf. Stilbene crystals:

- high luminescence efficiency
- fast response time

Stilbene crystals:

- high luminescence efficiency
- fast response time
- crystalline and solid
 → high durability,
 non-flammable
- greatly sensitive to neutrons \rightarrow well-suited in our range
- excellent $n \gamma$ discrimination

Stilbene based neutron spectrometer

Stilbene crystals:

- high luminescence efficiency
- fast response time
- crystalline and solid
 → high durability,
 non-flammable
- greatly sensitive to neutrons \rightarrow well-suited in our range
- excellent $n \gamma$ discrimination

 \rightarrow Stilbene fit all qualifications and were implemented into MONES @ ACCULINNA-2.

Energy calibration

The Compton edge energy E_{CE} is computed at a given gamma energy by the following,

$$E_{CE}=E_{\gamma}(1-rac{1}{1+rac{2E_{\gamma}}{m_ec^2}})$$

Energy calibration

An example of Compton edge from stilbene scintillator using $^{22}\mathrm{Na}$

The Compton edge energy E_{CE} is computed at a given gamma energy by the following,

$$E_{CE}=E_{\gamma}(1-rac{1}{1+rac{2E_{\gamma}}{m_ec^2}})$$

Energy calibration

7/13

MONES

ING-27 DT neutron generator

ING-27 DT neutron generator

- a deuteron-beam @ 100 keV bombards a thin titanium-tritium TiT target by means of $d + t \rightarrow \alpha + n$ fusion reaction to produce 14-MeV neutrons,
- the neutron generator has an intensity up to 10^8 n/s in 4π ,
- α -particles were registered by a 64-pixel (8 \times 8 strip) DSSD @ 100 mm from the target,
- stilbene was placed at a distance of 15 cm for neutron detection.

Neutron-gamma discrimination

The scintillation process by means of π -electronic

energy levels of an organic molecule.

Neutron-gamma discrimination

MONES

Neutron-gamma discrimination (cont.)

Neutron-gamma discrimination (cont.)

 \rightarrow Figure of Merit determine its neutron-gamma discrimination capacity, \rightarrow Apparently, neutron and gamma are well separated @ above 0.3 MeVee, which is in accordance with the incident neutron energy around 1 MeV.

Light output response in organic scintillator

• The recoil α -particles become dominant with incoming neutron energy > 6 MeV, ${}^{12}C(n, \alpha){}^{9}Be$, Q = -5.702 MeV and ${}^{12}C(n, n'\alpha)$, Q = -7.275 MeV,

Scintillator light output (MeVee) as a function the recoil particle energy (MeV). Data adapted from [4].

- Due to the quenching effect, the light output cannot be considered linear with regard to energy deposit in organic scintillators for heavy ions,
- The heavier the particle, the less the light it produces at a given energy.

[4] V. Verbinski et al., Nucl. Instrum. Methods 65 (1), 8-25 (1968).

MONES

Light output response in organic scintillator (cont.)

The neutron interaction with stilbene scintillator leads to a large number of different processes

Light output response in organic scintillator (cont.)

The neutron interaction with stilbene scintillator leads to a large number of different processes Light output response of stilbene organic scintillator to protons and alpha particles

 \rightarrow Chiefly, protons and $\alpha\text{-particles}$ produce the main light in the stilbene detector,

 \rightarrow The response of proton + $\alpha\text{-particles}$ was simulated and reconstructed with measured data, and compared with other works.

 \rightarrow Knowing the proton response is the key to determine the energy and TOF of incoming neutrons.

```
    [4] V. Verbinski et al., Nucl. Instrum. Methods 65 (1), 8–25 (1968).
    [5] R.L. Craun and D.L. Smith, Nucl. Instrum. Methods 80, 239–244 (1970).
```

Neutron registration efficiency

The calculated response in the stilbene detector

to various incident neutron energies

Neutron registration efficiency

 \rightarrow Measured data at 14 MeV was compared with GEANT4, thus neutron registration can be estimated in other energy ranges from 3-30 MeV.

MONES

- The performance of stilbene based modular neutron spectrometer (MONES) @ ACCULINNA-2 was characterized in this work,
- The 1st derivative of measured response combined with Geant4 simulations were to calibrate the stilbene detector,
- The neutron-gamma separation ability was examined by the use of Pulse Shape Analysis,
- The light output response functions of stilbene scintillator to charged particles (protons and α -particles) was reconstructed and compared with other studies,
- The neutron registration efficiency were determined by means of 14-MeV neutron generator and compared with simulated data.

