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Introduction

We modified the sine-Gordon equation to describe the phase dynamics in
long superconductor-ferromagnet-superconductor(SFS) φ0 Josephson
junction(LGG). In such a junction the Josephson phase and magnetic
moment are coupled due to spin-orbit coupling.

This allows the manipulation of magnetic properties by Josephson
current and vice versa. We investigate the effect of the spin-orbit
coupling, Josephson to magnetic energy ratio, and Gilbert damping on
the presence of the fluxon states. The obtained results can find
applications in the field of superconducting spintronics and quantum
computing.



Theoretical model: Current phase relation

In the dimensionless form we have:

(1)

where α is the surface loss parameter, β is the dissipation coefficient, the superscript “yyt”, means

∂3/(∂y∂y∂t), and the subscript “y” means the component of magnetization in y-direction, r is the spin

orbit coupling.

Using φt=V and φyyt= Vyy. At the boundary for φ we have:

(2)

where 𝑱𝒄 is Critical current density, 𝝀𝑱 is Joseph. Pent. length. So at the boundary we have:

(3)

where Vy and φy are determined by forward finite difference, while at y=L we have:

(4)

where Vy and φy are determined by backward finite difference method.

In the first stage we will assume no external field.

αφ𝑦𝑦𝑡 + φ𝑦𝑦 − φ𝑡𝑡 − β φ𝑡 − rmy
t − sin φ − r𝑚𝑦 + I = 0

φ𝑦|𝑦=0 + 𝛼φ𝑦𝑡|𝑦=0 = Τ𝐻𝑒𝑥𝑡 ( 𝐽𝑐𝜆𝐽)|𝑦=0 φ𝑦|𝑦=𝐿 + 𝛼φ𝑦𝑡|𝑦=𝐿 = Τ𝐻𝑒𝑥𝑡 ( 𝐽𝑐𝜆𝐽)|𝑦=𝐿

V𝑡|𝑦=0 =
2

ΔY
αV𝑦 + φ𝑦 − 𝐻𝑒𝑥𝑡|𝑦=0

V𝑡|𝑦=𝐿 =
2

ΔY
αV𝑦 + φ𝑦 − 𝐻𝑒𝑥𝑡|𝑦=𝐿



Theoretical model: LLG equation

where the effective field components are:

(6) (7)

The total effective field is consisted of magnetic anistropic field and Josephson field. We assume

the easy axis is in z-direction, Josephson field in y-direction.

𝝋 is the Josephson phase difference, G is Josephson energy to magnetic energy ration (G = εJ /(VF
μM2 ), r is spin-orbit coupling parameter, μ is the permeability, and 𝒌𝒂𝒏 = 𝑲𝒂𝒏 /(𝝁𝟎𝑴𝒔

𝟐).

𝜕𝑚

𝜕𝑡
= −

Ω0

1 + 𝛼𝑔
2

𝑚 ×𝐻𝑒𝑓𝑓 + 𝛼𝑔 𝑚 × 𝑚 ×𝐻𝑒𝑓𝑓

൯𝐻𝑒𝑓𝑓 = (𝐻𝑎𝑛𝑖𝑠𝑜 + 𝐻𝐽𝑜𝑠𝑒𝑝ℎ ;

𝐻𝑎𝑛𝑖𝑠𝑜 Ƹ𝑒𝑖 = 𝑘𝑎𝑛𝑚𝑖 ො𝒆𝒊;

𝐻𝐽𝑜𝑠𝑒𝑝ℎ Ƹ𝑒𝑦 = 𝐺𝑟 𝑠𝑖𝑛( 𝜑 − 𝑟𝑚𝑦)ො𝒆𝒊

𝐻𝑒𝑓𝑓 Ƹ𝑒𝑥 = 0

𝐻𝑒𝑓𝑓 Ƹ𝑒𝑦 = 𝐺𝑟 𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦

𝐻𝑒𝑓𝑓 Ƹ𝑒𝑧 = 𝑘𝑎𝑛𝑚𝑧

1
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H




= −

M
• 𝑬: total energy.

• VF: volume of ferromagnet.

(5)

𝑬𝒂𝒏 = −
𝑲𝒂𝒏 𝑽𝑭

𝟐

𝑴𝒊

𝑴

𝟐

𝒊: 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒆 𝒆𝒂𝒔𝒚 𝒂𝒙𝒊𝒔

𝑲𝒂𝒏 is Anisotropic const

M is the total magnetization

Magnetic anisotropy



Numerical approach
■ For the numerical solution of the system, a uniform discrete grid is introduced along

the spatial coordinate x with a step of Δx and along the time coordinate t with a step

of Δt.

■ Five-point finite-difference formulas are used to approximate the derivatives along

the spatial coordinate.

■ The resulting system of ordinary differential equations for the values of phase

differences and voltages at the nodes of the discrete grid is solved numerically using

the Gauss-Legendre method.

For CVC calculation:

At each time step, the integral is calculated using Simpson method

(8)

Next, the integral is calculated based on the rectangle method

(9)



Parallelization

■ Parallelization is performed using MPI parallel programming technology.

■ The parallel implementation is based on the Gauss-Legendre method.

■ Parallelization is based on dividing the nodes of a discrete grid by the x coordinate along the

length of the contact.

o Initial approximations are calculated in parallel mode using the overlapping iteration method.

o Parallel calculation of the coefficients of the Gauss-Legendre method, after each iteration the

extreme points are exchanged between adjacent parallel processes. A custom data type is

used to minimize the number of transfers.

o After parallel calculation of the final coefficients, the data is sent to all processes for next

iterations, also using a custom data type.

o Averaging and writing of files is done in the 0-th process.



Parallelization: Speedup

The calculations were performed at: L=20, β=0.05, α=0.05, αg=0, G=0.3, r=0.5, c=0, kan=0.7, 

ΩF=0.5, coordinate step Δx=0.1, time step Δt=Δx/5 , current step ΔI= 0.0005.

The calculations were performed on the HybriLIT cluster.



Numerical results

Preliminary results of the IV-curve for LJJ. Due to the coupling between Josephson phase and magnetization

dynamics through the spin-orbit coupling “r”, we see that an enhanced structure of the fluxon steps is shown

when r=0.2, 0.6, and 1 compared with the trivial IV for LJJ (at r=0). Currently, in collaboration with BLTP, we

investigate deeply this type of junction and how ferromagnetic resonance, Gilbert damping can affect the stable

solutions of sine-Gordon equation and the presence of the fluxon states.

General view of the CVC Enlarged area with steps

The calculations were performed at: L=10, β=0.05, α=0.05, αg=0, G=0.3, c=0, kan=0.7, ΩF=0.5, coordinate step 

Δx=0.1, time step Δt=Δx/5, current step ΔI= 0.0005.



Conclusions

■ The phase dynamics of a long SFS ϕ0 Josephson junction described by a modified 

sine-Gordon equation is shown.

■ Parallel version of the program was developed using MPI technology.

■ The maximum speedup achieved was 4.77 times.

■ The structure of fluxon steps is shown depending on the spin-orbit coupling 

parameter.

■ Further research in this direction will continue.
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