Introduction	Gluodynamics under rotation	Preliminary results	Negative Barnett effect o	Conclusions

Precision study of the equation of state of rotating gluon plasma

D.A.Sychev in collaboration with V.V.Braguta, M.N.Chernodub, A.A.Roenko, I.E.Kudrov

BLTP JINR, MIPT

31 October 2024

Introduction ●000	Gluodynamics	under

Preliminary result

Motivation

Introduction 0●00	Gluodynamics under rotation	Preliminary results	Negative Barnett effect 0	Conclusions
Rigidity cond	dition			

$$v = \Omega \times r \tag{1}$$

$$\Omega = \frac{1}{2} \nabla \times v = \text{const}$$
 (2)

Introduction ००●०	Gluodynamics under rotation	Preliminary results	Negative Barnett effect 0	Conclusions
Rotating co	ordinates			

$$t = t_{\mathsf{lab}}, \quad r = r_{\mathsf{lab}}, \quad z = z_{\mathsf{lab}}, \quad \varphi \sim (\varphi_{\mathsf{lab}} - \Omega t)$$
 (3)

$$g_{\mu\nu}^{(lab)} = \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$$
 (4)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = (1 - r^{2}\Omega^{2})dt^{2} - 2r^{2}\Omega dtd\varphi - dr^{2} - r^{2}d\varphi^{2} - dz^{2}$$
(5)

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & \Omega y & -\Omega x & 0 \\ \Omega y & -1 & 0 & 0 \\ -\Omega x & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(6)

Introduction 000●	Gluodynamics under rotation	Preliminary results	Negative Barnett effect ○	Conclusions
Moment of	inertia			

$$E = E^{(lab)} - J\Omega \tag{7}$$

$$dE^{(lab)} = TdS + \Omega dJ$$
(8)

$$dE = TdS - Jd\Omega \tag{9}$$

$$F = E - TS \tag{10}$$

$$J = -\left(\frac{\partial F}{\partial \Omega}\right)_{T} \tag{11}$$

$$I = \frac{1}{\Omega} J \tag{12}$$

$$egin{aligned} \dot{h}_2 &= rac{l}{VR_\perp^2} \,, \qquad R_\perp = rac{L_s}{2} \ K_2 &= -rac{l}{F_0 R_\perp^2} \end{aligned}$$

$$S_G = \int d^4 x \, \sqrt{\det g_{\alpha\beta}} \, \frac{1}{2g_{\mathsf{YM}}^2} \, g^{\mu\nu} g^{\rho\sigma} \, \mathrm{tr} F_{\mu\rho} F_{\nu\sigma} \tag{15}$$

$$S_{G} = \frac{1}{g_{YM}^{2}} \int d^{4}x \operatorname{tr}[(1 - r^{2}\Omega^{2})F_{xy}F_{xy} + (1 - y^{2}\Omega^{2})F_{xz}F_{xz} + (1 - x^{2}\Omega^{2})F_{yz}F_{yz} + F_{x\tau}F_{x\tau} + F_{y\tau}F_{y\tau} + F_{y\tau}$$

$$+F_{z\tau}F_{z\tau}-2iy\Omega(F_{xy}F_{y\tau}+F_{xz}F_{z\tau})+2ix\Omega(F_{yx}F_{x\tau}+F_{yz}F_{z\tau})-2xy\Omega^2F_{xz}F_{zy}]$$
(16)

Simulations with a sign problem:

- Analytical continuation $\Omega_I = -i\Omega$
- Expansion coefficients at $\Omega=0$

Gluodynamics under rotation

Preliminary results

Negative Barnett effect

Conclusions

Temperature dependence of moment of inertia

 Introduction
 Gluodynamics under rotation
 Preliminary results
 Negative Barnett effect
 Conclusions

 Condition of thermodynamic stability
 Condition
 Condition
 Conclusion
 Conclu

$$\delta \boldsymbol{E} - \boldsymbol{T} \delta \boldsymbol{S} - \boldsymbol{\Omega} \delta \boldsymbol{J} > 0 \tag{17}$$

$$g^{(W),\mu\nu} = -\frac{\partial^2 f(T, \mathbf{\Omega})}{\partial X_{\mu} \partial X_{\nu}}, \qquad X_{\mu} = (T, \Omega_i)$$
(18)

$$C_J = T\left(\frac{\partial S}{\partial T}\right)_J > 0 \tag{19}$$

l > 0 (20)

Introduction

Gluodynamics under rotation

Preliminary results

Negative Barnett effect

Conclusions

Decomposing moment of inertia. Simulations without rotation

$$F = -T \ln \int DAe^{iS}$$
⁽²¹⁾

$$I^{\rm gl} = I^{\rm gl}_{\rm mech} + I^{\rm gl}_{\rm magn}$$
(22)

$$I_{\rm mech}^{\rm gl} = \frac{1}{T} \langle\!\langle \left(\boldsymbol{n} \cdot \boldsymbol{J}^{\rm gl}\right)^2 \rangle\!\rangle_T$$
(23)

$$J_{i}^{\rm gl} = \frac{1}{2} \int_{V} d^{3}x \,\epsilon_{ijk} M_{\rm gl}^{jk}(\mathbf{x}), \qquad i, j = 1, 2, 3$$
(24)

$$M_{\rm gl}^{ij}(\mathbf{x}) = x^{i} T_{\rm gl}^{j0}(\mathbf{x}) - x^{j} T_{\rm gl}^{i0}(\mathbf{x})$$
(25)

$$T_{\rm gl}^{\mu\nu} = G^{a,\mu\alpha} G^{a,\nu}{}_{\alpha} - (1/4) \eta^{\mu\nu} G^{a,\alpha\beta} G^{a}_{\alpha\beta}$$
(26)

$$\langle\!\langle \mathcal{O} \rangle\!\rangle_{\mathcal{T}} = \langle \mathcal{O} \rangle_{\mathcal{T}} - \langle \mathcal{O} \rangle_{\mathcal{T}=0}$$
(27)

Introduction

Gluodynamics under rotation

Preliminary results

Negative Barnett effect

Conclusions

Moment of inertia and magnetic gluon condensate

$$I_{\text{magn}}^{\text{gl}} = \int_{V} d^{3}x \Big[\langle\!\langle (\boldsymbol{B}^{a} \cdot \boldsymbol{x}_{\perp})^{2} \rangle\!\rangle_{T} + \langle\!\langle (\boldsymbol{B}^{a} \cdot \boldsymbol{n})^{2} \rangle\!\rangle_{T} \boldsymbol{x}_{\perp}^{2} \Big]$$
(28)
$$B_{i}^{a} = \frac{1}{2} \epsilon^{ijk} G_{jk}^{a}$$
(29)
$$\langle\!\langle B_{i}^{a} B_{i}^{a} \rangle\!\rangle_{T} = \frac{1}{2} \delta_{ii} \langle\!\langle (\boldsymbol{B}^{a})^{2} \rangle\!\rangle_{T}$$
(30)

$$\langle\!\langle B_i^{\mathsf{a}} B_j^{\mathsf{a}} \rangle\!\rangle_{\mathsf{T}} = \frac{-}{3} \delta_{ij} \langle\!\langle (\mathbf{B}^{\mathsf{a}})^2 \rangle\!\rangle_{\mathsf{T}}$$
(30)

$$I_{\text{magn}}^{\text{gl}} = \frac{2}{3} \int_{V} d^{3}x \, x_{\perp}^{2} \left\langle\!\left\langle \left(\boldsymbol{B}^{a}\right)^{2}\right\rangle\!\right\rangle_{T}$$
(31)

$$I_{\rm class} = \int_{V} d^{3}x \,\rho(\mathbf{x}) \,\mathbf{x}_{\perp}^{2}$$
(32)

$$\rho(T) \to \frac{2}{3} \langle\!\langle (\boldsymbol{B}^{\boldsymbol{a}})^2 \rangle\!\rangle_T \tag{33}$$

Gluodynamics under rotation

Preliminary results

Negative Barnett effect

Conclusions

Moment of inertia and magnetic gluon condensate

Preliminary results Negative Barnett effect

Simulations in rotating frame

$$\frac{f(T)}{T^4} = -N_t^4 \int_{\beta_0}^{\beta} d\beta' \Delta s(\beta')$$
(34)

$$\Delta s(\beta) = \langle s(\beta) \rangle_{\tau=0} - \langle s(\beta) \rangle_{\tau}$$
(35)

$$\frac{f(T)}{T^4} = c_0 + c_2 v_l^2 + c_4 v_l^4 \tag{36}$$

$$J = -\left(\frac{\partial F}{\partial \Omega}\right)_{T}$$
(37)

$$J = 2J_2v_l + 4J_4v_l^3$$
 (38)

Introduction 0000	Gluodynamics under rotation	Preliminary results 0000●000	Negative Barnett effect 0	Conclusions
Moment of i	inertia			

Introduction 0000	Gluodynamics under rotation	Preliminary results 00000●00	Negative Barnett effect 0	Conclusions
Next rotating	g moment			

Introduction

Gluodynamics under rotation

Preliminary results

Decomposition of the next rotating moment

Introduction	Gluodynamics under rotation	Preliminary results	Negative Barnett effect ●	Conclusions
Barnett effec	t			

Introduction 0000	Gluodynamics under rotation	Preliminary results	Negative Barnett effect 0	Conclusions ●○
Summary				

- Lattice method for studying the dependence of the EoS of gluodynamics on the rotation was introduced.
- Below the "supervortical temperature" $T_s = 1.50(10)T_c$ negative moment of inertia suggests an instability of rigidly rotating gluon plasma.
- The rotational instability is related to the scale anomaly and the magnetic gluon condensate.
- Rotating moment next to the moment of inertia suggests that plasma redistributes towards outer parts of the system at high temperatures.
- Rotating moment next to the moment of inertia takes opposite value near T_c , similar in behavior to the moment of inertia.

Introduction 0000	Gluodynamics under rotation	Preliminary results	Negative Barnett effect 0	Conclusions ○●
Summary				

Thanks for attention!