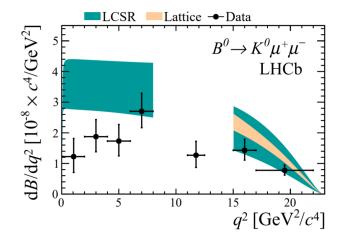

Coulomb interaction in rare decays of B-Mesons

Stepan Ilich Manukhov¹ Scientific advisor: Nikolai Viktorovich Nikitin^{1,2}

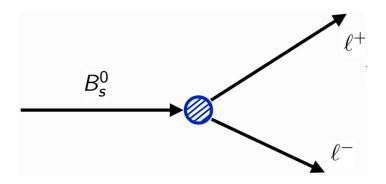
 ¹ Faculty of Physics, Lomonosov Moscow State University
 ² Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University


October 30, 2024

Problem statement and relevance of the work

The partial decay width of $B^0_s\to\mu^+\mu^-,$ measured in various experiments, as well as the averaged predictions of the Standard Model

Problem statement and relevance of the work


Differential decay width of $B^0 \rightarrow K^0 \mu^+ \mu^-$ - predictions of the Standard Model, experimental values arXiv:1403.8044 [hep-ex]

Part 1. Formulation and justification of method.

(日)

4 / 20

Key idea - replacement of the secondary quantization procedure

Leptons cannot be considered free - in the final state, they interact with each other.

Key idea - replacement of the secondary quantization procedure

The standard procedure of secondary quantization - expansion in plane waves:

$$\ell(x) = \sum_{s=1,2} \int \frac{d^3 p}{(2\pi)^3} (a_p u(p,s) e^{-ipx} + b_p^{\dagger} \bar{v}(p,s) e^{+ipx}) \quad (1)$$

Modified procedure of secondary quantization - expansion in exact solutions of the wave equation with an external potential (Furry's method):

$$\ell(x) = \sum_{s=1,2} \int \frac{d^3 p}{(2\pi)^3} (a_p \Psi_{\mathcal{E}\vec{p}}^{(+)}(x) e^{-i\mathcal{E}^{(+)}t} + b_p^{\dagger} \Psi_{-\mathcal{E}-\vec{p}}^{(-)}(x) e^{+i\mathcal{E}^{(-)}t})$$
(2)

Justification of the approach using the decay $B
ightarrow S^+S^-$

Three methods for accounting for Coulomb interaction

The non-relativistic Gamow-Sommerfeld-Sakharov factor:

$$\mathcal{K}^{(GSS)} = \frac{2\pi\alpha/v}{1 - e^{-2\pi\alpha/v}},\tag{3}$$

 The exact relativistic method of Crater (arXiv:hep-ph/9912386) and Sazdjian (PhysRevD 33, 3401):

$$\mathcal{K}^{(CS)} = \left| \frac{\Gamma(\sqrt{\frac{1}{4} - \alpha^2} + \frac{1}{2} + i\frac{\alpha}{\nu})}{\Gamma(\sqrt{1 - 4\alpha^2} + 1)} \right|^2 \cdot e^{\pi\alpha/\nu}, \tag{4}$$

The approximate relativistic method of Furry (PhysRev 81,115):

$$\mathcal{K}^{(Furry)} = e^{\pi \alpha/\nu}.$$
 (5)

Justification of the approach using the decay $B o S^+S^-$

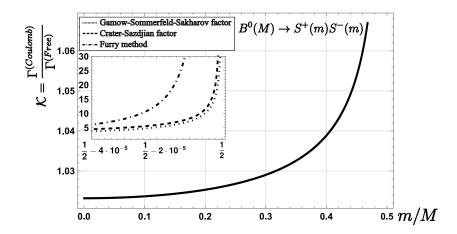
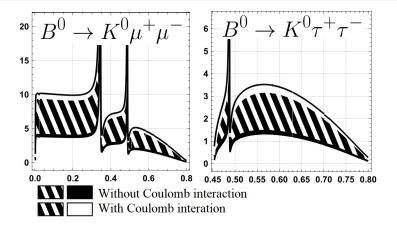


Figure: Comparison of three methods for accounting Coulomb interaction between particles.

Part 2. Coulomb interation in $B^0_{s,d} \to \ell^+ \ell^$ and $B^0_{s,d} \to h^0 \ell^+ \ell^-$ decays.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの


9 / 20

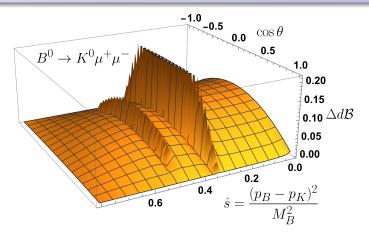
Coulomb interaction in the decays $B_s^0 \rightarrow \ell^+ \ell^-$

	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(\mathit{free})}$	$\mathcal{B}^{(Coulomb)}$	
$B_s^0 o \mu^+ \mu^- [10^{-9}]$	$3.83^{+0.44}_{-0.41}$	$\textbf{3.66} \pm \textbf{0.14}$	$\textbf{3.75} \pm \textbf{0.14}$	
$B^0 o \mu^+ \mu^- [10^{-11}]$	< 19	1.03 ± 0.05	1.05 ± 0.05	
$B_s^0 o e^+ e^- [10^{-11}]$	< 940	1.77 ± 0.08	1.81 ± 0.09	
$B^0 o e^+ e^- [10^{-13}]$	< 25000	$\textbf{4.99} \pm \textbf{0.25}$	5.10 ± 0.26	
$B_s^0 o au^+ au^- [10^{-8}]$	$< 6.8\cdot 10^5$	4.61 ± 0.22	$\textbf{4.75} \pm \textbf{0.23}$	
$B^0 o au^+ au^- [10^{-9}]$	$< 2.1 \cdot 10^6$	1.28 ± 0.07	1.32 ± 0.07	

Table: Branching ratio $\mathcal{B} = \Gamma_{B^0_{d,s} \to \ell^+ \ell^-} / \Gamma^{(total)}_{B^0_{d,s}}$

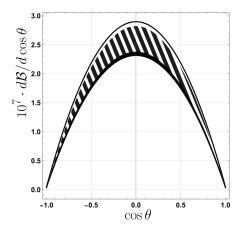
Coulomb interaction in the decay $B^0\to K^0\mu^+\mu^-$ and $B^0\to K^0\tau^+\tau^-$

The differential decay width $10^7 \cdot \frac{1}{\Gamma^{(total)}} \frac{d\Gamma}{ds}$ as a function of s/M_B^2 where $s = (p_{B^0} - p_{K^0})^2$.


Coulomb interaction in the decay $B^0_s o h^0 \ell^+ \ell^-$

Decay	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(th, free)}$	$\mathcal{B}^{(th,coulomb)}$	Corr
$B^0 o K^0 e^+ e^- [10^{-7}]$	$2.5^{+1.1}_{-0.9}$	3.64 ± 0.77	3.73	2.32%
$B^0 o K^0 \mu^+ \mu^- [10^{-7}]$	3.39 ±0.35	3.63 ± 0.77	3.72 ± 0.78	2.34%
$B^0 o K^0 au^+ au^- [10^{-8}]$	-	5.0 ± 2.1	5.3 ± 2.2	5.75%
$B^0 o \pi^0 e^+ e^- [10^{-8}]$	< 8.4	1.32 ± 3.0	1.35 ± 3.0	2.32%
$B^0 o \pi^0 \mu^+ \mu^- [10^{-8}]$	< 6.9	1.31 ± 3.0	1.34 ± 3.0	2.34%
$B^{0} \to \pi^{0} \tau^{+} \tau^{-} [10^{-9}]$	_	3.29 ± 0.73	3.45 ± 0.76	4.93%

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで


Decay	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(th,free)}$	$\mathcal{B}^{(\textit{th},\textit{coulomb})}$	Corr
$B_s^0 \to \eta e^+ e^- [10^{-7}]$	—	4.24 ± 0.79	4.33 ± 0.80	2.32%
$B_{s}^{0} \to \eta \mu^{+} \mu^{-} [10^{-7}]$	_	4.22 ± 0.79	4.32 ± 0.80	2.34%
$B_{s}^{0} \to \eta \tau^{+} \tau^{-} [10^{-8}]$	_	6.7 ± 1.2	7.1 ± 1.3	5.64%
$B_{s}^{0} \rightarrow \eta' e^{+} e^{-} [10^{-7}]$	—	3.13 ± 0.58	3.20 ± 0.59	2.31%
$B_{s}^{0} \to \eta' \mu^{+} \mu^{-} [10^{-7}]$	_	3.11 ± 0.58	3.18 ± 0.59	2.34%
$B_s^0 o \eta' \tau^+ \tau^- [10^{-8}]$	_	2.01 ± 0.36	2.15 ± 0.38	7.0%
$B_s^0 o K^0 e^+ e^- [10^{-8}]$		1.42 ± 0.34	1.45 ± 0.35	2.32%
$B^0_s o K^0 \mu^+ \mu^- [10^{-8}]$	_	1.41 ± 0.34	1.44 ± 0.35	2.34%
$B_s^0 \to K^0 \tau^+ \tau^- [10^{-9}]$	_	2.49 ± 0.59 ¤	2.64 ± 0.62	6.02%

Angle distributions in the decay $B^0 o K^0 \mu^+ \mu^-$

A graph of $\Delta d\mathcal{B} \equiv 10^7 \cdot \left(\frac{d\mathcal{B}}{d\hat{s}d\cos\theta}\right)_{\text{Coulomb}} - 10^7 \cdot \left(\frac{d\mathcal{B}}{d\hat{s}d\cos\theta}\right)_{\text{free}}$ as a function of $\hat{s} = (p_B - p_K)^2 / M_B$ and $\cos\theta$, where $\theta = \angle (\mathbf{p}_{\ell^+}, \mathbf{p}_K)$ in the rest frame of the lepton pair.

Angle distributions in the decay $B^0 \rightarrow K^0 \mu^+ \mu^-$

Graph of the $10^7 \cdot d\mathcal{B}/d\cos\theta$ dependence on $\cos\theta$, where $\theta = \angle(\mathbf{p}_{\ell^+}, \mathbf{p}_K)$ in the rest frame of the lepton pair

Conclusion and results

- A method to account for the Coulomb interaction in lepton and semilepton decays of B-mesons was developed.
- Corrections to the decays were calculated $B^0_{s,d} \to \ell^+ \ell^-$, $B^0 \to \{K^0, \pi^0\} \ell^+ \ell^-$ and $B^0_s \to \{\eta, \eta', K^0\} \ell^+ \ell^-$ (21 decays in total)
- For the $B_s^0 \rightarrow \mu^+ \mu^-$ decay, accounting for the Coulomb interaction improves the agreement between the CM predictions and the experimental data
- The Coulomb correction can be up to 7%, which is similar to the error of the form factors

Thank You for Your Attention!

Coulomb interaction in the decays $B_s^0 \rightarrow \ell^+ \ell^-$

The decay width for $B^0_s
ightarrow \ell^+ \ell^-$ is given by:

$$\Gamma_{B_{s}^{0} \to l^{+}l^{-}} = \mathcal{K}_{B_{s}^{0} \to \mu^{+}\mu^{-}}^{(Furry)} \cdot |D|^{2} \frac{\sqrt{M^{2} - 4m^{2}}}{8\pi}, \text{ where}$$
(6)
$$D = \frac{iG_{F}}{\sqrt{2}} \frac{\alpha_{em}}{2\pi} \cdot V_{tb} V_{ts}^{*} f_{B_{s}^{0}} 2mC_{10A}$$
$$\mathcal{K}_{B_{s}^{0} \to l^{+}l^{-}}^{(Furry)} = \frac{\Gamma^{(Coulomb)}}{\Gamma^{(free)}} = e^{\pi\alpha\mathcal{E}/p}$$

here ${\mathcal E}$ and p are the lepton's energy and momentum, respectively.

Coulomb interaction in the decay $B^0_s
ightarrow K^0 I^+ I^-$

The differential decay width for
$$B_s^0 \to K^0 l^+ l^-$$
 is given by:

$$\frac{d\Gamma}{d\hat{t}d\hat{s}} = \frac{G_F^2 \alpha_{em}^2 |V_{tb} V_{ts}^*| M^5}{256\pi^5} (-\hat{\Pi}\beta_p + 2\hat{m} |C_{10A}|^2 \delta_p) \cdot \mathcal{K}^{(Coulomb)}, \quad (7)$$
$$\beta_p = |C_{9V} f_+(q^2) + 2MC_{7\gamma} s(q^2)|^2 + |C_{10A} f_+(q^2)|^2$$
$$\hat{\Pi} = (\hat{t} - 1)(\hat{t} - \hat{r}) + \hat{s}\hat{t} + \hat{m}(1 + \hat{r} + \hat{m} - \hat{s} - 2\hat{t})$$
$$\delta_p = \left(1 + \hat{r} - \frac{\hat{s}}{2}\right) |f_+(q^2)|^2 + (1 - \hat{r}) Re[f_+(q^2)f_-^*(q^2)] + \frac{\hat{s}}{2} |f_-(q^2)|^2$$
$$\mathcal{K}^{(Coulomb)} = exp\left(\frac{\pi\alpha}{\sqrt{1 - 4\hat{m}/\hat{s}}}\right)$$

A general recipe that allows for the accounting of Coulomb interaction in decays, in which the final state contains an l^+l^- pair (and no more charged particles):

$$\langle I^+I^-H_2|O|H_1\rangle \rightarrow \langle I^+I^-H_2|O|H_1\rangle \cdot \frac{\Gamma(1-i\frac{\alpha\mathcal{E}_l}{2p_l})}{\Gamma(1+i\frac{\alpha\mathcal{E}_l}{2p_l})}\exp(\frac{\pi\alpha\mathcal{E}_l}{2p_l})$$

O - operator representing an arbitrary combination of γ -matrices, momenta, as well as quark and lepton fields, \mathcal{E}_I, p_I - energy and momentum of the charged lepton in the rest frame of the I^+I^- pair, $\Gamma(x)$ - Euler's gamma function, H_1, H_2 - neutral hadrons in the initial and final states respectively, $\alpha = \alpha_{em} \approx 1/137$.