Towards a software ecosystem for high-precision multi-scale *ab initio* relativistic quantum modeling of atoms, molecules, and materials

A. V. Oleynichenko

A. S. Rumiantsev, L. V. Skripnikov, M. M. Seregin, M. I. Losev, A. V. Zaitsevskii, E. Eliav, V. S. Galigerov, Yu. V. Kashpurovich, V. V. Stegailov, A. V. Titov

NRC "Kurchatov Institute" – PNPI, Quantum physics and chemistry department Moscow Institute of Physics and Technology, Dolgoprudny, Russia

> oleynichenko_av@pnpi.nrcki.ru http://qchem.pnpi.spb.ru https://atom.mipt.ru

28th International Scientific Conference of Young Scientists and Specialists (AYSS-2024) JINR, Dubna, 30th October, 2024

What is quantum chemistry?

electronic Hamiltonian of a N-electron system:

$$\hat{H}_e = -rac{1}{2}\sum_{i=1}^{N_{ ext{elec}}}\Delta_i + \sum_{i=1}^{N_{ ext{elec}}}\sum_{lpha=1}^{N_{ ext{nuc}}}\left(-rac{Z_lpha}{|m{R}_lpha-m{r}_i|} + \hat{U}_lpha(i)
ight) + \sum_{i < j}rac{1}{|m{r}_i-m{r}_j|}$$

pseudopotential operator = relativistic effects interelectronic interaction (Coulomb)

coordinates of electrons coordinates of nuclei charges of nuclei (or atomic cores

electronic Schrödinger equation (or its relativistic counterpart):

Yet another quantum chemistry package - why?

Our focus point: *d*-elements, lanthanides, actinides, superheavy elements (SHEs)

- very strong relativistic (and possibly QED) effects
- open shells, several unpaired electrons
- complicated structure of electronic wavefunctions

(multireference nature = several leading Slater determinants)

very dense electronic spectrum

desired accuracy < 0.1 eV

very wide range of problems to be solved: from atoms to materials

Yet another QC package – why?

- optical and magnetic properties of *f*-element compounds
- active laser media; sources of light; chromophores, luminophores
- chemistry and spectroscopy of actinides and superheavy elements
- ▶ searches for \mathcal{P}, \mathcal{T} -odd fundamental interactions (physics beyond the Standard model)
- optical spectroscopy of atoms and molecules to extract properties of nuclei
- thermodynamics, physical and chemical properties of actinide compounds
- ▶ fine structure effects in spectra of light elements; spin-forbidden transitions
- the Periodic table for the most heavy chemical elements
- laser cooling and assembly of cold molecules

Ab initio multi-scale / multi-level modeling of electronic structure

our dream: one software ecosystem - all systems!

Relativistic model: generalized relativistic pseudopotential (GRPP)

 core electronic shells are replaced with the some potential Û acting on valence electrons (the Pauli principle is accounted for)

the valence electrons are described by the Schrödinger equation:

$$\hat{H}^{GRPP} = \sum_{i} \left(-\frac{\Delta_{i}}{2} + \sum_{\alpha} \left(-\frac{z_{\alpha}}{r_{\alpha i}} + \hat{U}_{\alpha}(i) \right) \right) + \sum_{i>j} \frac{1}{r_{ij}}$$

i, j - sum over electrons

 α – sum over nuclei

 z_{lpha} – effective charge of the atomic core lpha, z_{lpha} = Z_{lpha} – $N_{
m inner \ core \ el-}$

• potential \hat{U} can effectively account for:

- ightarrow scalar-relativistic effects
- \rightarrow spin-orbit interaction
- \rightarrow Breit interaction of electrons
- \rightarrow finite nuclear charge distribution (the Fermi model)
- \rightarrow QED contributions (electron self-energy + vacuum polarization)

▶ The most accurate version of the method – generalized relativistic pseudopotential (GRPP)

Relativistic model: generalized relativistic pseudopotential (GRPP) the libgrpp library

🖟 aoleynichenko	/ libgrpp (Public)		٢	ζ Pin	
↔ Code ⊙ Issues	11 Pull requests 🕞 Actions 🖽	Projects 🖽 Wiki 🛈 Security 🗠 Insights 🕸 Settings			
	🌵 main 👻 🖞 1 branch 💿 0 tags	Go to file Add file	▼ Code •	About 🕸	
	aoleynichenko new license: LGPL	1cda3f6 yesterda	iy 🔞 17 commits	A library for the evaluation of molecular integrals of the generalized relativistic osciudopotential operator	
	🖿 libgrpp	grpp gradients	3 weeks ago	over Gaussian functions	
	🖿 test	command-line args for test_libgrpp_c	3 weeks ago	Readme	
	test_libgrpp_c	command-line args for test_libgrpp_c	3 weeks ago	藝 LGPL-2.1 license	
	test_libgrpp_f90	overlap and nucattr integrals in the test programs last me		☆ 1 star	
	🗅 .gitignore	command-line args for test_libgrpp_c	3 weeks ago	V 0 forks	
	CMakeLists.txt	grpp gradients	3 weeks ago		
		new license: LGPL	yesterday	Releases	
	README.md	Update README.md	3 weeks ago	No releases published	
				Create a new release	
	IE README.md		0		
	libgrpp		Packages No packages published Publish your first package		
	A library for the evaluation of mol- (GRPP) over Gaussian functions.	ecular integrals of the generalized relativistic pseudopotential c	Languages		

https://github.com/aoleynichenko/libgrpp

Ab initio multi-scale / multi-level modeling of electronic structure

Level 1. Small molecules and atoms: internally contracted multireference coupled cluster theory (ic-MRCC) (M. I. Losev, A. V. Oleynichenko)

$$|\psi_{n}
angle = \exp(\mathcal{T}) | \widetilde{\psi}_{n}
angle \qquad |\widetilde{\psi}_{n}
angle = \sum_{\mu} c_{\mu} |\Phi_{\mu}
angle$$

- more flexible Ansatz: contractions between the T operators are allowed
- acceptable computational complexity: O(N⁶)
- (nearly) arbitrary open shells
- a path towards subtle nuclear properties from optical spectra (isotope shifts, octupole deformations, magnetic & quadrupole moments, ...)

Program implementation:

- non-relativistic implementation GeCCo exists https://github.com/ak-ustutt/GeCCo-public
- ▶ 2024: interface to PySCF
- planned: relativistic version

Ab initio multi-scale / multi-level modeling of electronic structure

Level 2. Small cluster models of solids and small molecules: multireference Fock space coupled cluster theory (FS-MRCC)

wave function:

$$|\psi_n\rangle = \{\exp(T)\} |\tilde{\psi}_n\rangle$$

 $T = \sum_{pq...rs...} t_{pq...rs...} \{a_p^{\dagger} a_q^{\dagger} \dots a_s a_r\}$

T - cluster operator $t_{pq...rs...}$ - cluster amplitudes a_p^{\perp} , a_q - creation and annihilation operators

- the most effective account for electron correlation
- computational complexity: time – min O(N⁶) memory – min O(N⁴)

relativistic calculations = complex arithmetic + low symmetry!

Implementation of the relativistic Fock space coupled cluster theory: the EXP-T program package

(A. V. Oleynichenko, A. S. Rumiantsev, A. V. Zaitsevskii, E. Eliav)

Q aoleynichenko / EXP-T Traile						
⇔ Code ⊙ Issues 13 Pull requests	⊙ Actions 🗄 Projects 🕕 Security	🗠 Insights				
	P master → P 2 branches © 0 tags		o file Code 🔹	About		
	aoleynichenko Create LICENSE	7r29raa 2 weeks ag	o 🔞 58 commits	The EXP-T program package is designed for high-precision modeling		
	🖿 docs	direct calculation of properties in the 0h1p and 0h2p sectors	5 months ago	the relativistic Fock space		
	 examples 	direct calculation of properties in the 0h1p and 0h2p sectors	5 months ago	multireference coupled cluster method (FS-RCC). EXP-T is written from scratch		
	openblas	testing with ctest + refactoring of CC iterative solution in all sectors	6 months ago	in the C99 programming language and		
	scripts	expt_spectrum.py script	2 months ago	is currently focused on Unix-like systems.		
	in sec	expt_spectrum.py script	2 months ago	Readme		
	🖿 test	expt_spectrum.py script	2 months ago	魏 LGPL-2.1 license		
	CMakeLists.txt	expt_spectrum.py script	2 months ago	10 stars		
	LICENSE	Create LICENSE	2 weeks ago	© zwatching V 1 fork		
	README.md	Update README.md	3 years ago			
	I README.md		Releases			
The EXP-T program system				Destruction		
	The EXP-T program package is designed for high-precision modeling of molecular electronic structure using the relativistic Fock space multireference coupled cluster method (TS-RCC, EXP-T is written from scratch in the COP9 programming language and is currently focused on Unixide systems.			rackages No packages published		
	Webpage of the EXP-T project:		Languages			
	http://qchem.pnpi.spb.ru/expt			Fortran 48.2% Assembly 26.0%		

https://github.com/aoleynichenko/EXP-T

Implementation of the relativistic Fock space coupled cluster theory: the EXP-T program package

(A. V. Oleynichenko, A. S. Rumiantsev, A. V. Zaitsevskii, E. Eliav)

The new program package EXP-T for coupled cluster calculations was developed at NRC "Kurchatov Institute" – PNPI

- electronic structure of atoms, molecules and defects in crystals
- Kramers-unrestricted relativistic coupled cluster theory
- open shells: Fock-space multireference coupled cluster
- CCSD, CCSD(T), CCSDT-1,2,3, CCSDT models
- analytic density matrices for single-reference CCSD and CCSD(T)
- molecular integrals are imported from the DIRAC package relativistic Hamiltonians: Schrödinger, Dirac-Coulomb(-Gaunt) DC(G), (generalized) pseudopotentials
- **>** property calculations, e. g. transition dipole moments \rightarrow intensities in spectra
- analytic density matrices
- flexible and enabling fast implementation of new models!

A. V. Oleynichenko, A. Zaitsevskii, E. Eliav, Commun. Comp. Inf. Sci. 1331, 375 (2020)

Ab initio multi-scale / multi-level modeling of electronic structure

Level 3. Cluster models of solids and medium-sized molecules: multireference multi-partitioning perturbation theory (MPPT) (M. M. Seregin, A. V. Oleynichenko, A. V. Zaitsevskii)

► Schrödinger equation ⇒ des Cloizeaux equation:

 $H |\psi_n\rangle = E_n |\psi_n\rangle \Rightarrow H_{\text{eff}} = \Omega^{\dagger} H \Omega$ and $H_{\text{eff}} |\tilde{\psi}_n\rangle = E_n |\tilde{\psi}_n\rangle$ and $|\tilde{\psi}_n\rangle = \sum_J c_{Jn} |\Phi_J\rangle$ Ω - wave operator, $\Omega |\tilde{\psi}_n\rangle = |\psi_n\rangle$ H_{eff} - effective Hamiltonian, its diagonalization gives E_n

• Partitioning of the Hamiltonian depends on a model determinant $|\Phi_J\rangle$ chosen as a vacuum:

$$H = H_0(J) + V(J)$$
 $H_0 = \sum_{h}^{\operatorname{occ in } |\phi_J\rangle} \varepsilon_h^{\oplus} a_h^{\dagger} a_h + \sum_{p}^{\operatorname{virt in } |\phi_J\rangle} \varepsilon_p^{\odot} a_p^{\dagger} a_p$

Second-order PT contribution to H_{eff}:

$$\langle \Phi_J | H_{\text{eff}} | \Phi_{J'}
angle = \frac{1}{2} \sum_{|\Phi_A
angle \in Q} \frac{\langle \Phi_J | H | \Phi_A
angle \langle \Phi_A | H | \Phi_{J'}
angle}{\sum_i \varepsilon_i^{\oplus} - \sum_a \varepsilon_a^{\odot}} + \text{h.c}$$

Q – orthogonal complement to the model space $P = \text{span}\{|\Phi_J\rangle\}$

A. Zaitsevskii, J.-P. Malrieu, Chem. Phys. Lett., 233, 597 (1995)

Level 3. Cluster models of solids and medium-sized molecules: multireference multi-partitioning perturbation theory (MPPT) (M. M. Seregin, A. V. Olevnichenko, A. V. Zaitsevskii)

Summary for non-quantum-chemists:

- determinant-based multireference perturbation theory
- ▶ incomplete model spaces ⇒ compact representation
- arbitrary open shells
- acceptable computational complexity: four-index transformation: O(N⁵) H_{eff} construction: O(MN⁴) (M - number of model-space determinants)

Program implementation:

- written by A. V. Zaitsevskii and R. Cimiraglia in 1990s
- 2024: code refactoring
- 2024: modern interface to PySCF

A. Zaitsevskii, J.-P. Malrieu, Chem. Phys. Lett., 233, 597 (1995)

Ab initio multi-scale / multi-level modeling of electronic structure

accuracy

internally contracted multireference coupled cluster theory

FS-MRCC Fock-space multireference coupled cluster theory

MPPT multireference multi-partitioning perturbation theory

Level 4. Cluster models of solids and large molecules: two-component Kramers-unrestricted density functional theory

• one-electron functions – molecular spinors $\psi_i(\mathbf{r})$ with mixed $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ components

$$\psi_i(\boldsymbol{r}) = \sum_{\mu} C_{\mu i}^{(\alpha)} \begin{pmatrix} \chi_{\mu} \\ 0 \end{pmatrix} + \sum_{\mu} C_{\mu i}^{(\beta)} \begin{pmatrix} 0 \\ \chi_{\mu} \end{pmatrix}$$

 $\chi_{\mu}(\mathbf{r})$ – Gaussian basis functions $C^{(lpha,eta)}_{\mu i}$ – complex-valued coefficients

two-component Kohn-Sham equations

$$\left(\boldsymbol{h}^{GRPP}+\boldsymbol{J}-\boldsymbol{a}_{x}\boldsymbol{K}+\boldsymbol{v}_{xc}
ight)\psi_{i}=arepsilon_{i}\psi_{i}$$

 v_{xc} – exchange-correlation potential a_x – fraction of exact exchange Hartree-Fock: v_{xc} = 0, a_x = 1

resolution of identity (RI) approximation (example: Coulomb term)

$$J_{\mu
u} = \sum_{
ho\sigma} D_{
ho\sigma} \; (\mu
u|
ho\sigma) \quad \Rightarrow \quad J_{\mu
u} = \sum_{
ho\sigma PQ} D_{
ho\sigma} \; (\mu
u|P) \; (V^{-1})_{PQ} \; (
ho\sigma|Q)$$

computational scaling $O(N^4) \Rightarrow O(N^3)$ or even O(N) for spatially extended systems

2cDFT: C. van Wüllen, Z. Phys. Chem. 224, 413 (2010); Rl: I. O. Glebov, V. V. Poddubnyi, Russ. J. Phys. Chem., 98, 617 (2024).

BUFO – a two-component density functional and Hartree-Fock program

(A. V. Oleynichenko, Yu. V. Kashpurovich, V. S. Galigerov, V. V. Stegailov)

Implemented features:

- restricted (RHF), unrestricted (UHF), two-component Hartree-Fock (2c SCF)
- resolution of identity (RI) approximation for RHF
- pseudopotentials

Planned features:

- RI approximation for UHF and 2c SCF
- analytic gradients
- density functional theory
- periodic boundary conditions
- Born-Oppenheimer molecular dynamics

(bufo bufo = common toad in Latin)

	*************	**********	*******	******	*******	*****	********		***
**									**
**		88			ad88				**
**		88			d8"				**
**		88			88				**
**		88,dPPYba,	88	88	MM88MMM	,adPP	Yba,		**
**		88P' "8i	a 88	88	88	a8"	"8a		**
**		88 di	8 88	88	88	8b	d8		**
**		88b, ,a8'	"8a,	, a88	88	"8a,	,a8"		**
**		8Y"Ybbd8"	`"Ybl	bdP'Y8	88	`"Ybb	dP***		**
**									**
**									**
**						+			**
**				#+	******		*-#++#1#++	W-18441=.	**
**								A+++++	
- 22		11			*******	A	and the state of		
- 22									- 22
- 22		***			Max-1844				
- 22	1000	***							
			** ***						

	+#+#+++####	*************	*****	*******	+X=+====				
**		********		******					
**		************	*******	····	********				
••	+00-++8-++-+++	***************	****#		****		-*		
**	11+4-=+==++=	**********	*#=*=+	****	*****	11-+++	*		
**	=-0+0=+++=++++	***-****=-=-3	MI-++++	+*=*===	*	-1-++=+	*		**
**	+==+*=+*#+++**	##+=++-=+>	******		*+==-+1=	.==++=	+=		**
**	:-+####-++++**+#	*****		=+#***-	=+-+:=,				**
**	.*=+***#++=+*+=	+=-*::	+-*=#==+;	****	:++	==+==-			**
**	,+-==+**#-+*+=	=#*-::.:-	*-=+=*=+;	#+=,	1	++=	::,=-,		**
**	++=+=-++#5	*****	******	**		=++	++-::		**
**	.**-**==::-	++#-::-:=+#1	0+=++++=			+.	. + 1 -	-	**
**	. += <i>S</i> : -+:	1+							**
**	**		:-+++==						**
**		.+*:	. = + + + = =	=+:					**
**		=	-=+=+88.	8+8					**
**			.+==+-+	+=-==					**
**			.+++-=	-==+*+=	**++*				**
**				. ===					**
**				+					**
**									**
**		a hartree-fe	ock and a	density	function	al pro	gran		**
**									**
***			*******						***
**									**
**	this is an expe	rimental con	de, the a	authors	accept r	io resp	onsibilit	,	
**	for the perform	ance of the	code or	for th	e correct	mess o	f the rest	lts.	**
**	tor the period								
**	if results obta	ined with th	his code	are nu	hlished.	an			**
- 22	** in results outside with this tope are published, an								
- 22	** appropriate citation would be:								
- 22	a u almuniaka				. bashes				
**	a. v. oteyniche	aiko, V. S. (parigero	v, yu.	v. kasnpu	11 OF1CR	, v. V. 5'	regariov	
**	** buro - a narcree-rock and densicy runctional program (2024)								
**									
***	************	********	*******	******			********		***

making it faster!

Tensor decompositions to reduce computational cost of the coupled cluster theories (A. S. Rumiantsev)

- all molecular integrals and amplitudes are represented by multidimensional arrays tensors
- tensor train (TT) representation

[I. V. Oseledets, SIAM J. Sci. Comput., 33, 2295 (2011)]

new library has been written in Rust (tensor contractions, transpositions, sparse arrays...)

the first implementation of the CCSD method employing tensor trains

Tensor decompositions to reduce computational cost of the coupled cluster theories (A. S. Rumiantsev)

Classical algorithm vs tensor trains: speedup, times

(linear alkanes)

ab initio multi-scale modeling of electronic structure: practice!

Ab initio multi-scale modeling of electronic structure: practical illustration Localized excitations in Ce³⁺ and Th³⁺-doped xenotime YPO₄

CTEP = Compound-Tunable Effective Potential

Ab initio multi-scale modeling of electronic structure: practical illustration Localized excitations in Ce^{3+} and Th^{3+} -doped xenotime YPO₄

- ▶ errors of order 0.2 0.3 eV
- ground state of Th^{3+} in crystal $6d^1$
- minimal cluster model calculations: FS RCCSD
- correction for the cluster model size: TD-DFTO
- the interplay of the crystal field and spin-orbit interaction

¹ A. V. Oleynichenko, Y. V. Lomachuk, D. A. Maltsev, N. S. Mosyagin, V. M. Shakhova, A. Zaitsevskii, A. V. Titov, PRB 109, 125106 (2024) 25/31

When?

Related reports at AYSS-2024

- Artem Rumiantsev (NRC "Kurchatov Institute" PNPI) Solving coupled cluster equations using tensor train decomposition
- Polina Khadeeva (NRC "Kurchatov Institute" PNPI) Ab initio study of chemical shifts of X-ray emission spectra in ytterbium halides by the coupled cluster method
- Yuri Kashpurovich (JIHT RAS) First steps in implementing the RI-HF algorithm for electronic structure calculations

Summary

- ▶ a large software package for multi-scale electronic structure simulations is under development
- Ianthanides, actinides, superheavy elements
- relativistic effects + QED + multireference wave functions
- from atoms to solids
- many models are already available for use!

any collaborations is welcome!!!

http://www.qchem.pnpi.spb.ru

https://atom.mipt.ru

Bibliography

 Multi-partitioning quasidegenerate perturbation theory. A new approach to multireference Møller-Plesset perturbation theory
 A. Zaitsevskii, J.-P. Malrieu
 Chem. Phys. Lett., 233, 597 (1995)

Towards high performance relativistic electronic structure modelling: the EXP-T program package A. V. Oleynichenko, A. Zaitsevskii, E. Eliav *Commun. Comput. Inf. Sci.* 1331, 375 (2020)

Relativistic Fock space coupled cluster method for many-electron systems: non-perturbative account for connected triple excitations
 A. V. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav
 Symmetry, 12(7), 1101 (2020)

LIBGRPP: a library for the evaluation of molecular integrals of the generalized relativistic pseudopotential operator over Gaussian functions
 A. V. Oleynichenko, A. V. Zaitsevskii, N. S. Mosyagin, A. N. Petrov, E. Eliav, A. V. Titov Symmetry 15(1), 197 (2023)

appendix

Accuracy of the generalized relativistic pseudopotential (GRPP) model Vertical excitation energies of the UO_2 molecule; compared to the 4-component Dirac-Coulomb-Gaunt calculations

FS-RCCSD calculation: $UO_2^{2+}(0h0p) \rightarrow UO_2^+(0h1p) \rightarrow UO_2(0h2p)$ Main model space comprised the $\approx 7s5f, 5f^2, 6d5f, 7p5f$ configurations of U For details, see: A. V. Oleynichenko et al, *Symmetry*, 15, 197 (2023)