### Ab initio study of chemical shifts of X-ray emission spectra in ytterbium halides by the coupled cluster method

P.A. Khadeeva<sup>1,2</sup>, V.M. Shakhova<sup>1</sup>, Y.V. Lomachuk<sup>1</sup>, N.S. Mosyagin<sup>1</sup>, A.V. Titov<sup>1,2</sup>

<sup>1</sup>NRC «Kurchatov Institute» - PNPI, Gatchina, Russia; <sup>2</sup>Saint-Petersburg State University, Saint Petersburg, Russia

## Study of the electronic structure of crystalline compounds

### Difficulties:

- High density of low-lying states; (multiconfiguration nature)
- Significant contribution of relativistic effects

=> The need to simultaneously account for relativistic and correlation effects at the highest level of accuracy.

# Study of the electronic structure of crystalline compounds

#### Difficulties:

- High density of low-lying states; (multiconfiguration nature)
- Significant contribution of relativistic effects

=> The need to simultaneously account for relativistic and correlation effects at the highest level of accuracy.

Description of the crystal fragment:

Density Functional Theory

Exchange & Correlation

Wave Function Theory

## Study of the electronic structure of crystalline compounds

### Difficulties:

- High density of low-lying states; (multiconfiguration nature)
- Significant contribution of relativistic effects

=> The need to simultaneously account for relativistic and correlation effects at the highest level of accuracy.

#### Description of the crystal fragment:



This approach makes it possible:

- description of crystals with impurity centers
- to predict the optical properties of crystals

**Step 1:** Quantum chemical calculation of the electronic structure

Relativistic coupled cluster method<sup>[1]</sup>

[1] Oleynichenko A.V. et al. // Phys. Rev., 2024, V. 109, p. 125106. doi: 10.1103/PhysRevB.109.125106

**Step 1:** Quantum chemical calculation of the electronic structure

Relativistic coupled cluster method<sup>[1]</sup> Generalized relativistic core pseudopotential method<sup>[2]</sup> Reducing the number of explicit electrons in Increasing accuracy the calculation

[1] Oleynichenko A.V. et al. // Phys. Rev., 2024, V. 109, p. 125106. doi: 10.1103/PhysRevB.109.125106
 [2] Titov A V, Mosyagin N S. // GRECP: Theoretical grounds, 1999, V. 71, PP. 359-401.

Step 1: Quantum chemical calculation of the electronic structure



[1] Oleynichenko A.V. et al. // Phys. Rev., 2024, V. 109, p. 125106. doi: 10.1103/PhysRevB.109.125106
[2] Titov A V, Mosyagin N S. // GRECP: Theoretical grounds, 1999, V. 71, PP. 359-401.
[3] Lomachuk Y. V. et al. // Phys. Chem. Chem. Phys, 2020, V. 22, PP. 17922-17931. doi: 10.1039/D0CP02277B.
[4] Maltsev D. A. et al. // Phys. Rev. B. 2021. May. V. 103. p. 205105. doi: 10.1103/PhysRevB.103.205105.
[5] Shakhova V. M. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. PP. 19333–19345. doi: 10.1039/D2CP01738E.
[6] Oleynichenko A.V. et al. // Phys. Rev., 2024, V. 109, p. 125106. doi: 10.1103/PhysRevB.109.125106.

#### **Step 2:** Restoration method<sup>[7]</sup>



Obtaining a four-component wave function after calculation with the pseudopotential

#### **Step 2:** Restoration method<sup>[7]</sup>



#### Chemical shifts of X-ray emission spectrum:

Pic 3: Diagram of the K-, L- and M-levels of atomic energy





#### **Step 2:** Restoration method<sup>[7]</sup>



#### Chemical shifts of X-ray emission spectrum:

Obtaining a four-component wave function after calculation with the pseudopotential

**Step 3:** Method for calculating chemical shifts of X-ray emission spectrum lines<sup>[8]</sup>

Calculation of the difference quantity upon excitation of inner core states



Pic 3: Diagram of the K-, L- and M-levels of atomic energy



#### Research objects:

Crystal fragments with CTEP for YbHal<sub>n</sub>(Hal=F, Cl; n=2, 3)

| Method of calculations:                | Program: | ↓ <mark>9 Basis set:</mark><br>Vb:                                                         | F — 4s3p1d<br>Cl — 5s4p1d |
|----------------------------------------|----------|--------------------------------------------------------------------------------------------|---------------------------|
| Relativistic Coupled Clusters (RCC-SD) | EXP-T    | 4s4p2d2f for compound with Yb <sup>2+</sup><br>6s6p4d4f for compounds with Yb <sup>3</sup> |                           |





Pilot calculations of chemical shifts of X-ray emission spectrum lines in crystal fragment with CTEP

| СТЕР        | κ <sub>α1</sub>        | κ <sub>α2</sub>        |  |  |
|-------------|------------------------|------------------------|--|--|
| YbF3/YbF2   | 513                    | 452                    |  |  |
| E           | 579±26 <sup>[9]</sup>  | 570±114 <sup>[9]</sup> |  |  |
| Experiment  | 557±27 <sup>[10]</sup> |                        |  |  |
| YbCl3/YbCl2 | 517                    | 455                    |  |  |
| Experiment  | 574±35 <sup>[11]</sup> |                        |  |  |



Table 1: Chemical shifts of the XES lines of the Yb atom in the YbHal<sub>3</sub> crystal relative to the YbHal<sub>2</sub> crystal, meV

[8] Matsushita T., Hofmann H. F. Origin of meter fluctuations in weak measurement interactions // Phys. Rev. A. 2024. V. 109. p. 022224.
 [9] E.V. Petrovich et al. Valence states of rare earth elements according to data on chemical displacements of X-ray lines // Radiochemistry. 1976. № 288
 [10] A. Sovestnov, Academy of Sciences of the USSR, Leningrad Institute of Nuclear Physics named after B.P. Konstantinov, 1982

### Contributions to the corrections to the mc-PP-CCSD calculations





$$K_{average} = \frac{1}{3} (2K_{\alpha 1} - K_{\alpha 2})$$

Table 2: Chemical shifts value for ytterbium fluorides, meV

| YbF3/YbF2       | Molecules |       |    | Crystal fragment with CTEP |         | Eventiment             |
|-----------------|-----------|-------|----|----------------------------|---------|------------------------|
|                 | mc-PP     | sc-PP | Δ  | mc-PP                      | mc-PP+∆ | Experiment             |
| κ <sub>α1</sub> | 539       | 630   | 92 | 513                        | 605     | 579±26 <sup>[8]</sup>  |
| κ <sub>α2</sub> | 473       | 559   | 85 | 452                        | 538     | 570±114 <sup>[8]</sup> |
| Kaverage        | 517       | 607   | 90 | 493                        | 583     | 557±27 <sup>[9]</sup>  |

#### Table 3: Chemical shifts value for ytterbium chlorides, meV

|                 | Molecules |       | Crystal fragment with CTEP |       | Eventiment |                        |
|-----------------|-----------|-------|----------------------------|-------|------------|------------------------|
|                 | mc-PP     | sc-PP | Δ                          | mc-PP | mc-PP+Δ    | Experiment             |
| κ <sub>α1</sub> | 521       | 605   | 84                         | 517   | 601        |                        |
| κ <sub>α2</sub> | 457       | 536   | 79                         | 455   | 534        |                        |
| Kaverage        | 500       | 582   | 82                         | 496   | 579        | 574±35 <sup>[10]</sup> |



For the first time, the chemical shifts of the X-ray emission spectrum on heavy atoms in crystals were calculated using the relativistic coupled cluster method

From the results obtained it is clear that in order to calculate the properties near a heavy atom it is necessary to carry out high-precision calculations of the electronic structure

Thanks for your attention