Multiple heavy ion injection into NICA Booster

Andrei Martynov

The 28th International Scientific Conference of Young Scientists and Specialists Dubna, 2024

SPI + LU-20 (5 MeV/u

KRION 6-T + HILAC (3 MeV/u)

KRION – 6T Electron String Ion Source

¹²⁴Xe

Q=2,18 nK, I= 200 μA, **t= 25** μs

Source type	Electron string (ESIS)
lon type	¹²⁴ Xe28+
Magnetic field in the trap	5T
Magnetic field at the cathode	0.25 T
Effective cathode voltage	6 kV
Cathode diameter	1.2 mm
Electron beam current	4-6 mA
Ion trap length	70 cm
Total ion charge	2.3 nC
Number of target ions at source exit	10 ⁸
	E /20

A.Martynov

AYSS-2024, Dubna

HEAVY ION LINEAR ACCELERATOR (HILAC)

Auxillary diagnostic equipment along the injector

CT – Current transformer, FC – Faraday Cup, PM- Profilometer, PP- Phase Probe)фазовый датчик)

Injection line into Booster

Heavy Ion linac consists of:

- Electron String Heavy ion source (ESIS) KRION-6T, 6T conducting solenoid of 1.2m length, extraction voltage up to 25.0 kV;
- Low energy beam transport channel LEBT, $E_{out} = 17 \text{ keV/n}$;
- Heavy ion LINAC: 4-rod RFQ is followed by two IH DTL section with the KONUS accelerating structure, accelerates ions with Charge-to-mass ratio of q/A = 6.25, E_{in} = 17 keV/n, E_{out} = 3.2 MeV/u;

-High energy beam transport channel (HILAC – BOOSTER)

Ion Source Main Parameters for the Run 4

Source type	Electron string (ESIS)	28+
lon type	¹²⁴ Xe28+	29+
Magnetic field in the trap	5T	1 1
Magnetic field at the cathode	0.25 T	
Effective cathode voltage	6 kV	27+
Cathode diameter	1.2 mm	
Electron beam current	4-6 mA	30+
Ion trap length	70 cm	Jack Land
Total ion charge	2.3 nC	26+
Number of target ions at source exit	10 ⁸	LA 54 59 64

Ion composition at the linac end: Ionization time – 18 ms; Target charge 28+ ~20-25% (% is close to SBSIM calculations, 23%)

Stable and safe HILAC operation with Ar¹³⁺ and Xe²⁸⁺ beams

At RFQ exit I=100 µA (yellow line). At HILAC exit I=65 μ A at ion pulse duration 22 μ s (red line), about 70% at this pulse of target ions ¹²⁴Xe²⁸⁺. Number of ions accelerated in HILAC at energy 3,2 MeV/n is about 1×10^8 . **Project HILAC intensity** ²⁰⁹Bi³⁵⁺ at energy 3,2 MeV/n is about 1.8×10⁹ per pulse.

Further development

Realization of multi cycle injection and upgrade of KRION-6T

A.Martynov

💬 Termometr 1-Wire

1X = 100144. EII = 0.1D = 1.1 = 04. SIX = 1000011

	Name	00010
0	1 - Общий напор	31,44
1	2 - Слив L1	31,75
2	3 - Корпус верх L1	31,13
3	4 - Корпус верх L2	31,38
4	5 - Слив L2	32,06
5	Статус	0
6		
7		
8		
9		

Beam signal from phase probe (10x injection)

NICA Booster

	Booster
Magnetic rigidity, T/m	25
Radius, meters	211
Beam intensity,	2-6x10 ⁹
particles per pulse	
Max. energy	600 MeV/u

Dipoles	
Number of dipoles	40
Maximum magnetic	1.8
field, T	
Effective field length,	2.2
m	
Bending angle, deg	9.0
Curvature radius, m	14.09
Vacuum chamber,	128x64
mm ²	
Quadr	upoles
Number of	48
quadrupoles	
Field gradient, T/m	19.7/-20.3
Effective field length,	0.4
m	

A.Martynov

Parameter	Value
Electron energy E, keV	≤1
Accuracy of energy adjustment and its stability, $\Delta E/E$	$\leq 1.10^{-5}$
Beam current stability, $\Delta I/I$	$\leq 1.10^{-4}$
Electron beam loss current, δI/I	$\leq 3.10^{-5}$
The strength of the ECS longitu- dinal magnetic field, kGs	1 – 2
Permissible inhomogeneity of the longitudinal magnetic field in the cooling area, $\Delta B/B$	\leq 3.10-5 on the length 15 cm
Transverse temperature of elec- trons in the cooling section (in the particle system), eV	≤ 0.3
Correction of the ion orbit at the input and output of ECS	offset, mm $\leq 1,0$ angular devia- tion, mrad $\leq 1,0$

Parameter	Value
Electron energy E, keV	≤1
Accuracy of energy adjustment and its stability, $\Delta E/E$	$\leq 1.10^{-5}$
Beam current stability, $\Delta I/I$	$\leq 1.10^{-4}$
Electron beam loss current, δI/I	$\leq 3.10^{-5}$
The strength of the ECS longitu- dinal magnetic field, kGs	1 – 2
Permissible inhomogeneity of the longitudinal magnetic field in the cooling area, $\Delta B/B$	\leq 3.10-5 on the length 15 cm
Transverse temperature of elec- trons in the cooling section (in the particle system), eV	≤ 0.3
Correction of the ion orbit at the input and output of ECS	offset, mm $\leq 1,0$ angular devia- tion, mrad $\leq 1,0$

Parameter	Value
Electron energy E, keV	≤ 1
Accuracy of energy adjustment and its stability, $\Delta E/E$	$\leq 1.10^{-5}$
Beam current stability, $\Delta I/I$	$\leq 1.10^{-4}$
Electron beam loss current, δI/I	$\leq 3.10^{-5}$
The strength of the ECS longitu- dinal magnetic field, kGs	1 – 2
Permissible inhomogeneity of the longitudinal magnetic field in the cooling area, $\Delta B/B$	\leq 3.10-5 on the length 15 cm
Transverse temperature of elec- trons in the cooling section (in the particle system), eV	≤ 0.3
Correction of the ion orbit at the input and output of ECS	offset, mm $\leq 1,0$ angular devia- tion, mrad $\leq 1,0$

Parameter	Value
Electron energy E, keV	≤1
Accuracy of energy adjustment and its stability, $\Delta E/E$	$\leq 1.10^{-5}$
Beam current stability, $\Delta I/I$	$\leq 1.10^{-4}$
Electron beam loss current, δI/I	$\leq 3.10^{-5}$
The strength of the ECS longitu- dinal magnetic field, kGs	1 – 2
Permissible inhomogeneity of the longitudinal magnetic field in the cooling area, $\Delta B/B$	\leq 3.10-5 on the length 15 cm
Transverse temperature of elec- trons in the cooling section (in the particle system), eV	≤ 0.3
Correction of the ion orbit at the input and output of ECS	offset, mm $\leq 1,0$ angular devia- tion, mrad $\leq 1,0$

Cooling of the ¹²⁴Xe28+ ion beam by electron beam with 50mA current at the energy of 1,830 keV

The uncooled and cooled ion beams.

При работе с пучком ионов, охлаждённых и ускоренных в Бустере, полностью «ободранных» на выходе из Бустера, доускоренных в Нуклотроне и выведенных на детектор BM@N, его скорость счёта возросла в два раза.

A.Martynov

Electron Cooling in Booster

- Electron cooling was demonstrated with the RF voltage present as it is required for beam accumulation
- □ Measurements support the accumulation rate of about 10 Hz

Beam current dependence on time with and without electron cooling. Rf harmonic number – 5. Cooling cycle duration - 200 ms. Electron beam current 50 mA. Electron beam voltage 1.83 keV

Beam Accumulation at electron cooling

- Beam accumulation happens in the longitudinal plane at Booster injection
 - \blacktriangleright 4 µs bunch 8 µs revolution time
- Each new injection happens after the previous one is cooled to the core
 - Expected injection rate 10 Hz
 - ➤ 10 15 injections will require
 - Total cycle duration ~5 s
- The permanently present 1st RF harmonic weakly affects large amplitude particles
- For small amplitude particles the cooling force will be intentionally reduced to avoid overcooling

□ To avoid anticoolig we need to match well the injection magnetic field and e-beam energy

 \blacktriangleright It happens since for large $\Delta p/p$, dF/dt changes sign after reaching the peak

An increase of ion accumulation intensity by a factor of 5 is planned. However application of electron cooling is restricted by ion bunch space charge effects at a level of $\cdot 10^9$ ions of Bi³⁵⁺

A.Martynov

CONCLUSION

The HILAC is modified for multi-injection and successfully tested (Summer 2024)

New power supplies for solenoids are developed, installed and proved their reliability under a long-duration operation, New water-cooling system for lenses is ready and tested

The beam transportation channel is capable to transfer the beam of increased intensity to the Booster (Summer 2024)

The Booster Run with multi-injection is scheduled for the Winter 2024-2025

Thank you for attention!