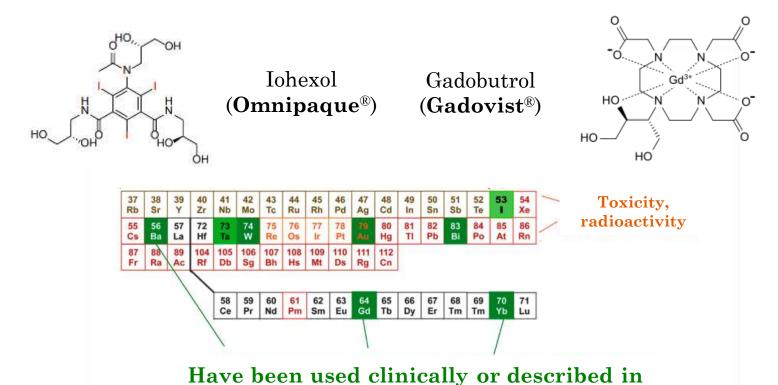

LOMONOSOV MOSCOW STATE UNIVERSITY CHEMISTRY DEPARTMENT

GD₂O₃@SIO₂ NANOPARTICLES WITH CORE-SHELL STRUCTURE FOR MAGNETIC RESONANCE IMAGING AND COMPUTED TOMOGRAPHY

> Anton Kupriianov Dr Denis Shashurin Dr Evgeniya Suslova Dr Georgiy Shelkov

PHOTON-COUNTING COMPUTED TOMOGRAPHY



X-ray emission and absorption spectra

Photon counting detectors

CONTRAST AGENTS

the literature as CAs

3

SYNTHESIS OF GADOLINIUM OXIDE

I
$$Gd(NO_3)_3 + 3NaOH \longrightarrow$$

$$\longrightarrow Gd(OH)_3 + 3NaNO_3$$

$$2Gd(OH)_3 \xrightarrow{t^o} Gd_2O_3 + 3H_2O$$

II
$$2Gd(NO_3)_3 + 3(NH_4)_2C_2O_4 \longrightarrow$$

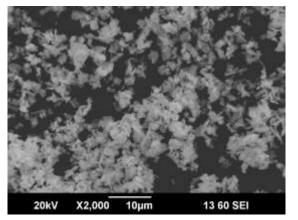
$$\longrightarrow Gd_2(C_2O_4)_3 + 6NH_4NO_3$$

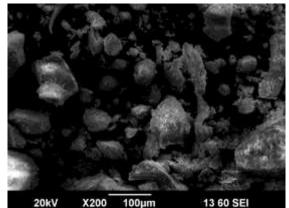
$$Gd_2(C_2O_4)_3 \xrightarrow{t^o} Gd_2O_3 + 3CO + 3CO_2$$

Sol-gel method:

- 1) Producing a Gd(OH)₃ sol
- 2) Solvent removing
- 3) Thermal decomposition in an air atmosphere

Precipitation in water solution:

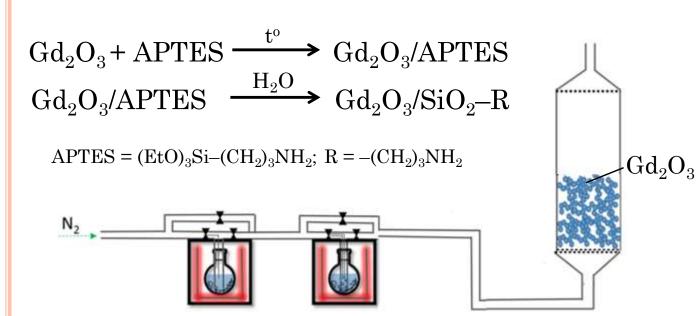

- 1) Precipitation of $Gd_2(C_2O_4)_3$
- 2) Thermal decomposition in an air atmosphere


Methods of studying: XRD, SEM


1

https://doi.org/10.1016/S0927-7757(01)01091-3

SYNTHESIS OF GADOLINIUM OXIDE



Nº	Precursor	T, °C	L, nm
1	$Gd(OH)_3$	600	8
2	$Gd(OH)_3$	700	10
3	$\mathrm{Gd}_2(\mathrm{C}_2\mathrm{O}_4)_3$	600	7

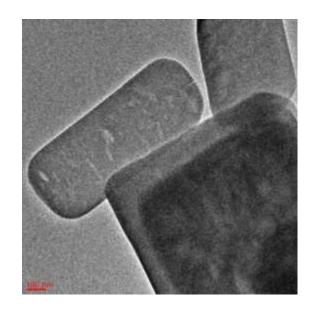
GAS-PHASE MODIFICATION

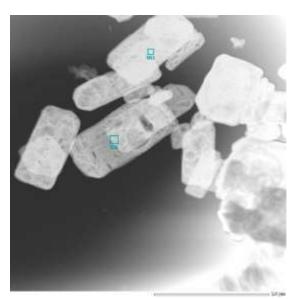
 $H_{2}O$

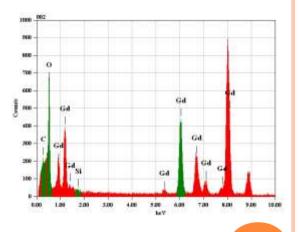
T, °C	t _{tr} , min		
	5		
150	10		
	30		
	5		
200	10		
	30		
	5		
250	10		
	30		

Methods of studying: TG, TEM, SEM, IR, XPS

APTES


https://doi.org/10.1021/acs.langmuir.0c03647


Modification using water solution


Precipitation of gadolinium oxalate and hydrolysis of TEOS:

$$1)2Gd(NO_3)_3*6H_2O + 3(NH_4)_2C_2O_4*H_2O = Gd_2(C_2O_4)_3*10H_2O + 6NH_4NO_3 + 5H_2O$$

2)
$$(EtO)_4Si + 2H_2O = SiO_2 + 4EtOH$$

 $Gd_2(C_2O_4)_3$ @Si O_2 TEM results

7

RESULTS

- 1. Gd₂O₃ nanoparticles were produced using two ways of synthesis
- 2. The morphology, structure and size of the particles were determined
- 3. The ways to produce particles with core-shell structure were discussed
- 4. $Gd_2(C_2O_4)_3@SiO_2$ particles were produced and their core-shell structure was confirmed

THANK YOU FOR YOUR ATTENTION!