The distributed Hall measuring system

Volkova Olga

First-year Master's student at NSU, Radiophysics chair Budker's Institute of Nuclear Physics (BINP), laboratory 6-1 Scientific supervisors: Batrakov Alexander Matveevich Shtro Konstantin Sergeevich

Magnetic field measurement

The device requirements

- Magnetic field in the 8 injection complex magnets must be remotely measured by the device
- 2. The total accuracy must be better than 10^{-3}
- The device must be designed to register the field which is around 1 T
- The device sensors have to be thin and small

The device requirements

 The device sensors have to be thin and small

The gap between the tube and the magnet pole is about 1.5 mm

Magnetic field measurers review

Hall effect sensors

 ✓ Possibility to make measurements remotely
✓ 10⁻³
✓ 1 T
✓ Thin
✓ Hall plate is small

3-dimensional sensors:

- SENM3Dx (FSV 100 x 100 x 10 μm³)
- MV2 (FSV 200 x 200 x 5 μm³)
- 1-dimensional sensors:
- ИМ10 ЗА1-1
- HE144

Hall effect sensors parameters

	SenM3Dx	MV2	ИМ10 3А1-1	HE144
Signal at 1T, V	0.7	1.77	0.13	0.17
Offset, mV	-11	49	-0.07	8.9
Offset drift, mV/ ^o C	-0.003	<2	0,25	-0,015
Gain, V/T	0.7	1.72	0,1237	0,2
Gain drift, ppm/ ^o C	<100	238	-24	200

The distributed magnetic field measuring system **Measuring unit** The injection complex control PoE Measuring unit system Hall effect sensors Measuring unit

The measuring unit prototype

The measuring unit prototype

Source, Cross board V0 and ADS1216 Demo board

Hall board probes (SENM3Dx)

Measured prototype parameters

	Average	Peak-to-peak
Offset	25 μ <i>V</i>	0.6 μ <i>V</i>
Gain	$0.244 \cdot 10^{-7} V/bit$	

Signal	Estimated accuracy	
1.72 <i>V</i>	$\leq \frac{U_{gain}}{U_{signal}} + \delta U_{offst} = 5.52 \ \mu V$	

Sensors test

The sensors measurement is verified by NMR.

Measurements repeatability is registered (< 10^{-3} for 3D and MM10 3A1-1 10^{-4} for HE144)

The calibration magnet

Three-dimensional sensors have been exposed to radiation for 2 weeks.

One-dimensional sensors have been exposed to radiation for 2 weeks and than for 4 weeks.

The injection complex magnets

The distributed magnetic field measuring system **Measuring unit** The injection complex control PoE Measuring unit system Hall effect sensors Measuring unit

The device architecture

A measuring channel

Conclusion

What is done/achieved:

What remains to be done:

- The measuring system structure;
- The measuring unit prototype;
- Measuring control and obtaining software;
- Measurement repeatability with an accuracy better than 10⁻³;
- The measuring module circuitry.

- Device board project developing, building, programming, debugging;
- Test and implementation radioactivity-resistant sensors.

ADS1216

- 8-channel, 24-bit
- Sigma-delta
- Pseudo-differential
- External reference 2.048
- Buffered channel
- PGA 1..128
- SPI
- Integral non-linearity 0.0015%
- External reference temperature drift is about 2ppm/°C
- Precision reference output resistance has temperature drift about 2 ppm/°C

Relative change in the sensitivity of one-dimensional

Relative change in the sensitivity of three-dimensional sensors

1e-03

The radioactivity resistance experiment

- A number of calibrations were conducted to *validate* measurements repeatability;
- 2. The sensors were placed to the injection complex magnet;
- 3. Several calibrations were made to register radioactivity *impact*.

The radioactivity resistance experiment

The target magnet (on the right)

Three-dimensional sensors have been exposed to radiation for 2 weeks.

One-dimensional sensors were exposed to radiation twice: the first time is for 2 weeks and the second time for 4 weeks.

Device	Accuracy
Measuring stand intended for three-dimensional sensors, signal value is about 1.7 V	5.52 uV/6 days
Measuring stand intended for one-dimensional sensors, signal value is about 0.2 V	22 uV/90 days
NMR magnetometers	10 ⁻⁷ при однородности поля 2 ÷ 3 · 10 ⁻⁴ / <i>ст</i>

ЯМР датчик

Катушки индуктивности

2 недели соответствуют дозе 500 рад

Change in the $\mathsf{MV2}$ sensitivity

The measuring stand intended for **one-dimensional** sensors

