

Development of X-ray Monochromatization Devices for Per-Pixel Energy Calibration of Semiconductor Detectors

Speaker: Truong Hoai Bao Phia,b

^a Institute of Physics, Vietnam Academy of Science and Technology ^b Joint Institute for Nuclear Research, Dubna

AYSS-2024, Dubna

Table of contents

• Motivation

Why is monochromatic X-ray source needed?

• Introduction

Operating principle, structure of developed system, supporting software.

• Measurements

To define the outputs of developed system and to investigate it's capability to provide the energy calibration for semiconductor pixel detectors.

Conclusions

Motivation

Semiconductor pixel detectors are used in:

- High-energy physics
- o Medical imaging
- o Environmental radiation monitoring

Per-pixel procedure of energy calibration is required to achieve a good energy resolution. To provide this procedure, monochromatic X-ray sources are needed.

Motivation

Ο

Introduction

Conclusion

Measurements

<u>Goal</u> of this study: to develop devices for X-ray monochromatization and to investigate the capability of these devices to provide the energy calibration for semiconductor pixel detectors.

Introduction

Typical continuous spectrum of X-ray tube $(U = 80kV, I = 50uA, t = 20s, E_{threshold} = 4.5keV)$

Introduction

 $\mathbf{O} \mathbf{O} \mathbf{O}$

0

Conclusion

Measurements

 \mathbf{O}

AYSS 2024

Introduction

1. X-ray tube

(anode: W, U=60-120kV, I=10-350uA)

2. Primary slit

(3-6mm)

3. Primary collimator

(copper tube: d = 30mm, D = 36mm, L = 56cm)

4. Secondary slit

(0-2mm horizontal, 0-3mm vertical)

5. Crystal

(graphite lattice)

6. Secondary collimator

(0-5mm horizontal)

7. Detector

(any portable detectors)

Introduction

000

Conclusion

Measurements

Motivation

Ο

AYSS 2024

Introduction

Control devices + software

Control software:-

- Input: the expected energy (eV)
- Run motors to needed angle

4 motors for:

- 1. Rotational motion of the crystal (1° = 4710 steps)
- 2. Precise rotational motion of the crystal (1° = 55940 steps)
- **3.** Rotational motion of the detector $(1^0 = 431 \text{ steps})$
- 4. Translational motion of the detector (1mm = 400 steps)

	MonoTurn			
	Crystal:	Energy (eV):	Wavelength (A):	Crystal angle (Deg):
	Graphite	8110	1.52873	13.030894
	Sapphire	inf	0.0	0.0
-			Crystal main:	0.0
			Crystal fine:	0.0
			Detector angle:	0.0
		Go to 0 Go to A	ngle Stop	
	Motivation	Introduction	Measurem	ents Conclusion

X-123CdTe Complete X-Ray & Gamma Ray Spectrometer

lead collimator (thickness 3mm, diameter 1mm)

Truong Hoai Bao Phi

AYSS 2024

Introduction 000

Conclusion

Measurements

Measured spectra at E_{expected} = 20keV, 40keV, 60keV and 80 keV detector X-123CdTe, lead collimator 1 mm, t = 20s

σ_{det}	= FWHM detector/2.355 (1keV FWHM at 122 keV for X-123CdTe)
σ_{mono}	monochromaticity of the source

Measurements

000000

Conclusion

Truong Hoai Bao Phi

AYSS 2024

Motivation

Introduction

Measurements of energy distribution in x (horizontal) and y (vertical) directions at the output of monochromatic X-rays source show that, at any energy:

 In x direction: linear dependence is observed.

Conclusion

- In y direction: energy doesn't change.

Measurements

000000

Energy map = energy at center pixel + gradient By this way, energy of photon falling into every pixel is defined

Energy point (keV)	Energy at center pixel (keV)	Gradient (keV/mm)
15	15.035 ± 0.828	-0.131
50	47.631 ± 2.150	-2.791

Truong Hoai Bao Phi

AYSS 2024

Photon flux distribution

High photon flux provides an ability to carry out the energy calibration procedure of pixel detectors, which need a high statistic at every pixel. In general, the output photon flux depends on the initial spectrum of X-rays tube and scattering ratio of radiation at specific wavelength.

Truong Hoai Bao Phi	AYSS 2024	Motivation	Introduction	Measurements	Conclusion
---------------------	-----------	------------	--------------	--------------	------------

Conclusions

- Tunable X-rays monochromatic source was developed with an energy range ۲ of 15-80 keV and monochromaticity of 2-6%.
- Measurements on the energy and photon flux distributions was carried out.
- Providing an energy map, developed X-rays monochromatic source can be used to carry out the energy calibration procedure of semiconductor pixel detectors.

Motivation Ο

Measurements

Conclusions

0

Thanks for your attention!

Comparison of monochromatic X-rays sources

Our devices (Bragg's diffraction) vs K fluorescence

W

Re

59.32 61.13

Comparison of monochromatic X-rays sources

Extra slides

Spectra obtained at a single pixel:

- Пики сливаются найти хорошо разрешаемые пики, найти типичный сигма.
- 2. Моделировать allpix2
- 3. Surrogate function fitting

1mm Thick CdTe Detection Efficiency

