Lattice simulation of QCD on supercomputers

V.V. Braguta

JINR

October 28, 2024

Outline:

Introduction

- Statistical mechanics
- QED as a gauge theory
- Building gluodynamics and QCD
- ▶ Lattice gluodynamics and QCD
- ▶ Numerical methods for lattice QCD
- ► Applications

Partition function

► Partition function:

$$Z = \sum_{n} e^{-\frac{E_{n}}{T}} = \sum_{n} \langle n | e^{-\frac{\hat{H}}{T}} | n \rangle = Tr \left[e^{-\frac{\hat{H}}{T}} \right],$$

$$\hat{H} | n \rangle = E_{n} | n \rangle$$

Free energy: $F = -T \log Z = E - TS, \quad Z = e^{-\frac{F}{T}}$

• Probability to find a system at the n-th level: $P_n = \frac{e^{-\frac{E_n}{T}}}{Z}$

$$\blacktriangleright \langle O \rangle = \sum_{n} P_n \langle n | \hat{O} | n \rangle = \frac{1}{Z} \sum_{n} \langle n | O | n \rangle e^{-\frac{E_n}{T}}$$

► Z contains an important information about system: ► $\langle E \rangle = T^2 \frac{\partial \log Z}{\partial T} = -T^2 \frac{\partial}{\partial T} \left(\frac{F}{T}\right)$ ► $p = -\frac{\partial F}{\partial V}$ ► $S = \frac{\partial T \log Z}{\partial T} = -\frac{\partial F}{\partial T}$

Path integral formulation for partition function

$$\blacktriangleright \ Z = Tr\left[e^{-\frac{\hat{H}}{T}}\right] = \sum_{q} \langle q|e^{-\frac{\hat{H}}{T}}|q\rangle = \int dq \langle q|e^{-\frac{\hat{H}}{T}}|q\rangle$$

▶ Quantum evolution in time: $\langle q'|e^{-i\frac{\hat{H}}{\hbar}t}|q\rangle$, q(0) = q, q(t) = q'

► Z looks like quantum evolution in *imaginary* time $t = -i\tau = -i\frac{1}{T}$, q(0) = q, $q(\tau = \frac{1}{T}) = q$

N degrees of freedom

•
$$q_i(\tau), i = 1..N$$

$$Z \sim \int \prod_{\tau} \prod_{i=1}^{N} dq_i(\tau) e^{-S_E} S_E = \int_0^{1/T} d\tau (\frac{m \sum_i \dot{q}_i(\tau)^2}{2} + V(q_i(\tau))), \quad q_i(0) = q_i(\tau = \frac{1}{T}) = q_i$$

Elementary particles

Standard Model of Elementary Particles

Properties of QED

- Interaction of charged particles
- Vector potential $A_{\mu} = (A_0, A_x, A_y, A_z), \quad \mu = 0, 1, 2, 3$ $\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \vec{\nabla} A_0, \quad \vec{B} = rot \vec{A}$
- Gauge transformation: $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} f, \quad \psi \rightarrow e^{if} \psi$ electric field: $\vec{E} \rightarrow \vec{E}$ magnetic field: $\vec{B} \rightarrow \vec{B}$
- QED action: $S = \int d^4x \left[-\frac{1}{2e^2} (\vec{H}^2 \vec{E}^2) + \bar{\psi} (i\gamma^{\mu} D_{\mu} m) \psi \right]$

• Coupling constant:
$$\alpha_{em} = \frac{e^2}{4\pi\hbar c} \simeq \frac{1}{137} \ll 1$$

Maxwell equations

$$divE = 4\pi\rho$$
$$divH = 0$$
$$rotE = -\frac{1}{c}\frac{\partial H}{\partial t}$$
$$rotH = \frac{4\pi}{c}j + \frac{1}{c}\frac{\partial E}{\partial t}$$

► Maxwell equations are linear

Building QCD

New quantum number: $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_2 \end{pmatrix}$

▶ Interactions of particles with the color

► Gauge transformation: $S(x) \in SU(3)$ $\hat{A}_{\mu} \rightarrow S\hat{A}_{\mu}S^{-1} - i\partial_{\mu}SS^{-1}$ $\hat{A}_{\mu} = t^{a}A^{a}_{\mu}, a = 1...8$ $\psi(x) \rightarrow S(x)\psi(x)$ chromo-electric field: $\vec{E} \rightarrow S^{-1}\vec{E}S$ chromo-magnetic field: $\vec{B} \rightarrow S^{-1}\vec{B}S$

• QCD action:

$$S = \int d^4x \left[-\frac{1}{g^2} Tr(\vec{H}^2 - \vec{E}^2) + \bar{\psi}(i\gamma^{\mu}\hat{D}_{\mu} - m)\psi \right]$$

• Coupling constant: $\alpha_s = \frac{g^2}{4\pi\hbar c} \sim 1$

Maxwell equations in QCD

$$\begin{split} divE^a &= 4\pi\rho^a + f_1(A, E, H, \ldots) \\ divH^a &= 0 + f_2(A, E, H, \ldots) \\ rotE^a &= -\frac{1}{c}\frac{\partial H^a}{\partial t} + f_3(A, E, H, \ldots) \\ rotH^a &= \frac{4\pi}{c}j^a + \frac{1}{c}\frac{\partial E^a}{\partial t} + f_4(A, E, H, \ldots) \end{split}$$

▶ Maxwell equations for QCD are nonlinear

Quantum chromodynamics(QCD)

- ► Degrees of freedom: Quarks ψ , gluons A
- QCD Lagrangian

$$L = -\frac{1}{4} \sum_{a=1}^{8} F_{a}^{\mu\nu} F_{\mu\nu}^{a} + \sum_{f=u,d,s,\dots} \bar{q}_{f} (i\gamma^{\mu}\partial_{\mu} - m)q_{f} + g \sum_{f=1}^{N_{f}} \bar{q}_{f} \gamma^{\mu} \hat{A}_{\mu} q_{f}$$

- ▶ Nonlinear equation of motion with $\alpha_s \sim 1$
- ▶ The most complicated physical theory
- QCD Lagrangian is well known but the calculations are not possible
 - ▶ In particular: Confinement from QCD lagrangian is a millenium problem

▶ Reliable results can be obtained on modern supercomputers

Lattice QCD

Lattice simulation

- Allows to study strongly interacting systems
- ▶ Based on the first principles of quantum field theory
- ▶ Powerful due to modern supercomputers and algorithms

Building lattice gluodynamics

 \blacktriangleright Lattice spacing-*a*

• Degrees of freedom:

$$U_{\mu}(n) = P \exp\left(-i \int_{C} dx^{\mu} \hat{A}_{\mu}\right)\Big|_{a \to 0} = e^{ia\hat{A}_{\mu}(n)} = 1 + ia\hat{A}_{\mu}(n)$$
13

Building lattice gluodynamics

•
$$U_{\mu\nu}(x) = U_{\mu}(n)U_{\nu}(x+\hat{\mu})U_{\mu}^{-1}(x+\hat{\nu})U_{\nu}^{-1}(n)$$

$$S_l = \frac{2}{g^2} \sum_n \sum_{\mu < \nu} ReTr[1 - U_{\mu\nu}(n)] | \\ S_l |_{a \to 0} \to \frac{1}{g^2} \int d^4x Tr(\vec{H}^2 - \vec{E}^2)$$

► Partition function of gluodynamics $Z_l = \int \prod_{n,\mu} dU_{\mu}(n) e^{-S_l}$

- 4-dimensional lattice: $L_s \times L_s \times L_s \times L_t = L_s^3 \times L_t$
- ▶ Lattice spacing-a

$$\blacktriangleright S = \frac{\beta}{3} \sum_{n} \sum_{\mu < \nu} ReTr[1 - U_{\mu\nu}(n)] + \bar{\psi}(\hat{D}(U) + m)\psi$$

$$Z_l = \int \prod dU d\bar{\psi} d\psi e^{-S_l} = \int \prod dU e^{-S_G(U)} \prod_{i=u,d,s...} \det \left(\hat{D}_i(U) + m_i \right) = \int \prod dU e^{-S_{eff}(U)}$$

Lattice simulation of QCD

- ▶ We study QCD in thermodynamic equilibrium
- ▶ The system is in the finite volume
- ► Calculation of the partition function $Z \sim \int DU e^{-S_G(U)} \prod_{i=u,d,s...} \det (\hat{D}_i(U) + m_i) = \int DU e^{-S_{eff}(U)}$
- ▶ Monte Carlo calculation of the integral
- ▶ Carry out continuum extrapolation $a \to 0$
- Uncertainties (discretization and finite volume effects) can be systematically reduced
- ▶ The first principles based approach. No assumptions!
- ▶ Parameters: g^2 and masses of quarks

Modern lattice simulation of QCD

 $Z_l \sim \int DU e^{-S_{eff}(U)}$

- ► Lattices
 - \blacktriangleright 96 × 48³
 - Variables: $96 \cdot 48^3 \cdot 4 \cdot 8 \sim 300 \cdot 10^6$
 - ▶ Matrices: $100 \cdot 10^6 \times 100 \cdot 10^6$
- ▶ Dynamical u, d, s, c-quarks
- ▶ Physical masses of u, d, s, c-quarks
- Lattice spacing $a \sim 0.05 \,\mathrm{fm}$

Monte Carlo method

• We calculate the integral: $I = \int_{+\infty}^{-\infty} dx \frac{e^{-x^2/2}}{\sqrt{2\pi}} = \int_{+\infty}^{-\infty} dx f(x) = 1$

► Generate the sequence of random numbers: $(x_1, x_2, x_3, ... x_N)$ in the region $x \in [-c, c]$

$$\blacktriangleright I_N = \frac{2c}{N} \sum_{i=1}^N f(x_i)$$

- $\blacktriangleright \lim_{N \to \infty} I_N = I$
- ► $I_{10} = 0.8836$, $I_{100} = 1.0708$, $I_{1000} = 0.9807$, $I_{10000} = 0.9983$, $I_{100000} = 1.0018$

Monte Carlo method

• We calculate the integral: $I = \int_{+\infty}^{-\infty} dx \frac{e^{-x^2/2}}{\sqrt{2\pi}} = \int_{+\infty}^{-\infty} dx f(x) = 1$

► Generate the sequence of random numbers: $(x_1, x_2, x_3, ... x_N)$ in the region $x \in [-c, c]$

$$\blacktriangleright I_N = \frac{2c}{N} \sum_{i=1}^N f(x_i)$$

- $\blacktriangleright \lim_{N \to \infty} I_N = I$
- ► $I_{10} = 0.8836$, $I_{100} = 1.0708$, $I_{1000} = 0.9807$, $I_{10000} = 0.9983$, $I_{100000} = 1.0018$
- ▶ Not very effective!

Metropolis algorithm

Calculation of the
$$\int dx e^{-S(x)}$$
, $S(x) = \frac{x^2}{2}$

- The first approximation $x_0 = 0$
- Choose randomly $\Delta x \in [-c, c]$
- $\blacktriangleright x' = x_k + \Delta x$
- Metropolis algorithm(accept/reject procedure): $\Delta S = S(x') - S(x_k)$. If $\Delta S < 0$, $S(x') < S(x_k)$, then $x_{k+1} = x'$. Else, x' is accepted with probability: $e^{-\Delta S}$.
- ▶ In practice: generate a random number $r \in [0, 1]$. If $r < e^{-\Delta S}$, then $x_{k+1} = x'$, else $x_{k+1} = x_k$.

Metropolis algorithm

Figure 2: The distribution of $x^{(1)}, x^{(2)}, \dots, x^{(n)}$, for $n = 10^3, 10^5$ and 10^7 , and $\frac{e^{-x^2/2}}{\sqrt{2\pi}}$.

The Hybrid Monte Carlo algorithm

▶ HMC can be considered as Brownian motion of the system

- Accept/reject step at the end of the trajectory
 - if $S_{eff}(U_{n+1}) < S_{eff}(U_n)$ the U_{n+1} is accepted
 - otherwise U_{n+1} is accepted with $p \sim e^{-[S_{eff}(U_{n+1}) S_{eff}(U_n)]}$
- Simulation of quantum system!
- ▶ For large number of the trajectories $p(U) \sim e^{-S_{eff}(U)}$

Applications

- Spectroscopy
- ▶ Matrix elements and correlations functions
- ▶ Thermodynamic properties of QCD
- ▶ Transport properties of QCD
- Phase transitions
- Nuclear physics
- ▶ Properties of QCD under extreme conditions
 - High temperature
 - Huge magnetic field
 - Large baryon density
 - Relativistic rotation
 - ...

. . .

- ▶ Vacuum structure and topological properties
- ▶ Beyond the Standard Model at strong coupling

Confinement in lattice simulation

- Small distances: $V(r) = -\frac{4}{3} \frac{\alpha_s(r)}{r}$ Asymptotic freedom $\alpha_s(r) \sim -\frac{1}{\log \Lambda r}|_{r \to 0} \to 0$
- ► Large distances $V(r) = \sigma_{phys}r$ Čonfinement $F = \sigma \simeq 160000 \text{ N}$
- ▶ To separate quarks one needs infinite energy

Confinement in lattice simulation

▶ Can be solved for one hour at modern laptop

String breaking

from arXiv:1001.0570

String breaking

- ► The string is not broken
- ► The string is broken

Spectroscopy: Mesons

Spectroscopy: Baryons

- The following law is well satisfied in nature $M \simeq \sum_i M_i$
- ► In QCD $p(uud) \quad M_p c^2 = 938 \text{ MeV} \gg (m_u + m_u + m_d)c^2 = 12 \text{ MeV}$ $n(udd) \quad M_n c^2 = 940 \text{ MeV} \gg (m_u + m_d + m_d)c^2 = 15 \text{ MeV}$

- ► The following law is well satisfied in nature $M \simeq \sum_i M_i$
- ► In QCD $p(uud) \quad M_p c^2 = 938 \text{ MeV} \gg (m_u + m_u + m_d)c^2 = 12 \text{ MeV}$ $n(udd) \quad M_n c^2 = 940 \text{ MeV} \gg (m_u + m_d + m_d)c^2 = 15 \text{ MeV}$
- ▶ Where is the rest of mass?

Chromoelectric fields in proton

 \blacktriangleright We are composed of gluons to 98%!

► Is vacuum an empty space $(\epsilon = 0)$?

► Vacuum is the state with the smallest energy

- Is vacuum an empty space $(\epsilon = 0)$?
- ► Vacuum is the state with the smallest energy
- $\blacktriangleright\,$ QCD vacuum: $\epsilon\simeq -(265\ MeV)^4,\ \langle H^2+E^2\rangle\neq 0$

Quantum (ultraviolet) fluctuations in QCD vacuum

- ▶ Classical vacuum is distorted by UV fluctuations
- ▶ The fluctuations take place at distances $\sim a$

Model of dual superconductor

Phase transitions

Experience from φ^4 -theory

$$\blacktriangleright V(\varphi) = -\frac{m^2}{2}\varphi^2 + \frac{\lambda}{4!}\varphi^4$$

- ▶ Order parameter: $\langle \varphi \rangle$
- ► Z_2 -symmetry: $\varphi \to (\pm 1)\varphi$
- $V(\varphi)$ is invariant but not the $\langle \varphi \rangle$
- Low temperature phase Z_2 is broken, $\langle \varphi \rangle \neq 0$
- High temperature phase Z_2 is restored $\langle \varphi \rangle = 0$

Condensation of monopoles

Polyakov line

Gluodynamics

$$\blacktriangleright S_l = \frac{\beta}{3} \sum_n \sum_{\mu < \nu} ReTr[1 - U_{\mu\nu}(n)]$$

• Polyakov line: $\langle P(\vec{x}) \rangle = TrP \exp\left(i \int_0^T dx^4 \hat{A}_4(\vec{x}, x^4)\right)$

▶ It is gauge invariant because periodic boundary conditions

- Z_3 symmetry: $U \to e^{2\pi k/3i}U, k = 0, 1, 2$
- S_l is invariant but not the $\langle P(\vec{x}) \rangle$

$$\blacktriangleright P = e^{-F_Q/T}$$

- ► Low temperature phase: $\langle P(\vec{x}) \rangle = 0$, $F_Q = \infty$, i.e. Z_3 is restored
- ▶ High temperature phase $\langle P(\vec{x}) \rangle \neq 0, F_Q = finite$, , i.e. Z_3 is broken

Polyakov line

 $^{*}hep-lat/0506019$

Static potential at finite temperature

• One needs the temperature $T \sim 150 \text{ MeV} \sim 1.5 \times 10^{12} \text{ degrees}$

Chiral symmetry breaking

Left and right sectors of the theory do not interact

$$\mathcal{L} = \bar{\Psi}i\hat{D}\Psi = \bar{\Psi}i\hat{D}\bigg(\frac{1+\gamma_5}{2} + \frac{1-\gamma_5}{2}\bigg)\Psi = \bar{\Psi}i\hat{D}\frac{1+\gamma_5}{2}\Psi + \bar{\Psi}i\hat{D}\frac{1-\gamma_5}{2}\Psi = \bar{\Psi}_Ri\hat{D}\Psi_R + \bar{\Psi}_Li\hat{D}\Psi_L$$

- ▶ For N_f quarks chiral symmetry is $SU_L(N_f) \times SU_R(N_f)$
- $\blacktriangleright \quad {\rm Order \ parameter: \ chiral \ condensate \ } \langle \bar{\Psi}\Psi\rangle = \langle \bar{\Psi}_L\Psi_R\rangle + \langle \bar{\Psi}_R\Psi_L\rangle$
- ▶ Dynamical chiral symmetry breaking $SU_L(N_f) \times SU_R(N_f) \rightarrow SU_V(N_f)$
- The mechanism of chiral symmetry breaking is unknown
- It is connected to the confinement
- Some ideas can be gained from NJL model

$$\mathscr{L}_{S} = \overline{\psi} \left[i\partial + g \left(\sigma + i\pi \cdot \tau \gamma_{5} \right) \right] \psi + \frac{1}{2} \left[(\partial \pi)^{2} + (\partial \sigma)^{2} \right] - \frac{\mu^{2}}{2} \left(\sigma^{2} + \pi^{2} \right) - \frac{\lambda}{4} \left(\sigma^{2} + \pi^{2} \right)^{2}.$$

Chiral symmetry breaking

- ▶ NJL models are based on BCS theory
- ▶ The interaction term $(\bar{\psi}\psi)^4$
- $\alpha_{NJL} < 1$ no solutions, $M = 0, E^2 = \vec{p}^2$
- ► $\alpha_{NJL} > 1$ there is solution $M \neq 0$, $E^2 = \vec{p}^2 + M^2$
- Dynamical symmetry breaking
- ▶ The condensate of Cooper pairs: $\langle \bar{\psi}\psi \rangle \neq 0$
- ▶ Condensate from vacuum!
- ► Too simple model: no confinement

Chiral condensate $\langle \bar{\psi}\psi \rangle$

*arXiv:1005.3508

QCD under extreme conditions

 Modern experiments: LHC(Switzerland), RHIC(USA), FAIR(Germany), NICA(Russia, Dubna, JINR)

QCD under extreme conditions

- ▶ Temperature $T \sim 150 \text{ MeV} \sim 1.5 \times 10^{12} \text{ degrees}$
- ▶ Baryon density $n > n_0$

. . .

- ▶ Magnetic fields $eB \sim 10^{13}$ T
- ▶ Rotation with angular velocity $\omega \sim 10^{22} \text{ c}^{-1}$

QCD equation of state

- ▶ Low temperature: HRG
- ▶ High temperature: SB Stefan Boltzmann: $p = \sigma T^4$
- ▶ At very high temperature QGP is gas of quarks and qluons?

Shear viscosity of QGP

- QGP is close to the ideal liquid $\left(\frac{\eta}{s} = (1-3)\frac{1}{4\pi}\right)$
- ▶ Considerable deviation from gas of quarks and gluons
- The result is close to the N=4 SYM $\frac{\eta}{s} = \frac{1}{4\pi}$

Shear viscosity of QGP

▶ QGP is the most superfluid liquid

THANK YOU!