
Lattice simulation of QCD on
supercomputers

V.V. Braguta

JINR

October 28, 2024

1



Outline:

▶ Introduction
▶ Statistical mechanics
▶ QED as a gauge theory
▶ Building gluodynamics and QCD

▶ Lattice gluodynamics and QCD
▶ Numerical methods for lattice QCD
▶ Applications

2



Partition function

▶ Partition function:
Z =

∑
n e

−En
T =

∑
n⟨n|e

− Ĥ
T |n⟩ = Tr

[
e−

Ĥ
T

]
,

Ĥ|n⟩ = En|n⟩

▶ Free energy:
F = −T logZ = E − TS, Z = e−

F
T

▶ Probability to find a system at the n-th level:

Pn = e−
En
T

Z

▶ ⟨O⟩ =
∑

n Pn⟨n|Ô|n⟩ = 1
Z

∑
n⟨n|O|n⟩e−

En
T

▶ Z contains an important information about system:
▶ ⟨E⟩ = T 2 ∂logZ

∂T = −T 2 ∂
∂T

(
F
T

)
▶ p = − ∂F

∂V

▶ S = ∂T logZ
∂T = −∂F

∂T
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Path integral formulation for partition function

▶ Z = Tr
[
e−

Ĥ
T

]
=

∑
q⟨q|e−

Ĥ
T |q⟩ =

∫
dq⟨q|e− Ĥ

T |q⟩

▶ Quantum evolution in time: ⟨q′|e−i Ĥ
ℏ t|q⟩, q(0) = q, q(t) = q′

▶ Z looks like quantum evolution in imaginary time
t = −iτ = −i 1T , q(0) = q, q(τ = 1

T ) = q

▶ Z ∼ limN→∞
∫ ∏N

τ=1 dq(τ)e
−SE

SE =
∫ 1/T

0
dτ(mq̇(τ)2

2 + V (q(τ))), q(0) = q(τ = 1
T ) = q
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N degrees of freedom

▶ qi(τ), i = 1..N

▶ Z ∼
∫ ∏

τ

∏N
i=1 dqi(τ)e

−SE

SE =
∫ 1/T

0
dτ(

m
∑

i q̇i(τ)
2

2 + V (qi(τ))), qi(0) = qi(τ = 1
T ) = qi
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Elementary particles
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Properties of QED

▶ Interaction of charged particles
▶ Vector potential
Aµ = (A0, Ax, Ay, Az), µ = 0, 1, 2, 3

E⃗ = −∂A⃗
∂t − ∇⃗A0, B⃗ = rotA⃗

▶ Gauge transformation:
Aµ → Aµ + ∂µf , ψ → eifψ

electric field: E⃗ → E⃗
magnetic field: B⃗ → B⃗

▶ QED action: S =
∫
d4x

[
− 1

2e2
(H⃗2 − E⃗2) + ψ̄(iγµDµ −m)ψ

]
▶ Coupling constant: αem = e2

4πℏc ≃ 1
137 ≪ 1
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Maxwell equations

divE = 4πρ

divH = 0

rotE = −1

c

∂H

∂t

rotH =
4π

c
j +

1

c

∂E

∂t

▶ Maxwell equations are linear
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Building QCD

▶ New quantum number: ψ =

ψ1

ψ2

ψ3


▶ Interactions of particles with the color

▶ Gauge transformation: S(x) ∈ SU(3)
Âµ → SÂµS

−1 − i∂µSS
−1 Âµ = taAa

µ, a = 1...8
ψ(x) → S(x)ψ(x)
chromo-electric field: E⃗ → S−1E⃗S
chromo-magnetic field: B⃗ → S−1B⃗S

▶ QCD action:
S =

∫
d4x

[
− 1

g2
Tr(H⃗2 − E⃗2) + ψ̄(iγµD̂µ −m)ψ

]
▶ Coupling constant: αs =

g2

4πℏc ∼ 1
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Maxwell equations in QCD

divEa = 4πρa+f1(A,E,H, ...)

divHa = 0+f2(A,E,H, ...)

rotEa = −1

c

∂Ha

∂t
+f3(A,E,H, ...)

rotHa =
4π

c
ja +

1

c

∂Ea

∂t
+f4(A,E,H, ...)

▶ Maxwell equations for QCD are nonlinear
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Quantum chromodynamics(QCD)

▶ Degrees of freedom: Quarks ψ, gluons A

▶ QCD Lagrangian

L = −1

4

8∑
a=1

Fµν
a F a

µν +
∑

f=u,d,s,...

q̄f (iγ
µ∂µ−m)qf +g

Nf∑
f=1

q̄fγ
µÂµqf

▶ Nonlinear equation of motion with αs ∼ 1

▶ The most complicated physical theory

▶ QCD Lagrangian is well known but the calculations are not
possible
▶ In particular: Confinement from QCD lagrangian is a

millenium problem

▶ Reliable results can be obtained on modern supercomputers
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Lattice QCD

Lattice simulation
▶ Allows to study strongly interacting systems
▶ Based on the first principles of quantum field theory
▶ Powerful due to modern supercomputers and algorithms
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Building lattice gluodynamics

▶ Lattice spacing-a

▶ Degrees of freedom:

Uµ(n) = P exp

(
−i

∫
C
dxµÂµ

)∣∣
a→0

= eiaÂµ(n) = 1 + iaÂµ(n) 13



Building lattice gluodynamics

▶ Uµν(x) = Uµ(n)Uν(x+ µ̂)U−1
µ (x+ ν̂)U−1

ν (n)

▶ Sl =
2
g2

∑
n

∑
µ<ν ReTr[1− Uµν(n)]|

Sl
∣∣
a→0

→ 1
g2

∫
d4xTr(H⃗2 − E⃗2)

▶ Partition function of gluodynamics
Zl =

∫ ∏
n,µ dUµ(n)e

−Sl
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Building lattice QCD

▶ 4-dimensional lattice: Ls × Ls × Ls × Lt = L3
s × Lt

▶ Lattice spacing–a

▶ S = β
3

∑
n

∑
µ<ν ReTr[1− Uµν(n)] + ψ̄(D̂(U) +m)ψ

▶ Zl =
∫ ∏

dUdψ̄dψe−Sl =∫ ∏
dUe−SG(U)

∏
i=u,d,s... det (D̂i(U) +mi) =∫ ∏

dUe−Seff (U)
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Lattice simulation of QCD

▶ We study QCD in thermodynamic equilibrium
▶ The system is in the finite volume
▶ Calculation of the partition function

Z ∼
∫
DUe−SG(U)

∏
i=u,d,s... det (D̂i(U) +mi) =

∫
DUe−Seff (U)

▶ Monte Carlo calculation of the integral
▶ Carry out continuum extrapolation a→ 0

▶ Uncertainties (discretization and finite volume effects) can
be systematically reduced

▶ The first principles based approach. No assumptions!
▶ Parameters: g2 and masses of quarks
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Modern lattice simulation of QCD

Zl ∼
∫
DUe−Seff (U)

▶ Lattices
▶ 96× 483

▶ Variables: 96 · 483 · 4 · 8 ∼ 300 · 106
▶ Matrices: 100 · 106 × 100 · 106

▶ Dynamical u, d, s, c–quarks
▶ Physical masses of u, d, s, c–quarks
▶ Lattice spacing a ∼ 0.05 fm
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Monte Carlo method

▶ We calculate the integral: I =
∫ −∞
+∞ dx e−x2/2

√
2π

=
∫ −∞
+∞ dxf(x) = 1

▶ Generate the sequence of random numbers: (x1, x2, x3, ...xN ) in
the region x ∈ [−c, c]

▶ IN = 2c
N

∑N
i=1 f(xi)

▶ limN→∞ IN = I

▶ I10 = 0.8836, I100 = 1.0708, I1000 = 0.9807, I10000 = 0.9983,
I100000 = 1.0018

▶ Not very effective!
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Metropolis algorithm

Calculation of the
∫
dxe−S(x), S(x) = x2

2

▶ The first approximation x0 = 0

▶ Choose randomly ∆x ∈ [−c, c]
▶ x′ = xk +∆x

▶ Metropolis algorithm(accept/reject procedure):
∆S = S(x′)− S(xk). If ∆S < 0, S(x′) < S(xk), then
xk+1 = x′. Else, x′ is accepted with probability: e−∆S .

▶ In practice: generate a random number r ∈ [0, 1]. If
r < e−∆S , then xk+1 = x′, else xk+1 = xk.
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Metropolis algorithm

from arXiv:1808.08490 20



The Hybrid Monte Carlo algorithm

▶ HMC can be considered as Brownian motion of the system
▶ Accept/reject step at the end of the trajectory

▶ if Seff (Un+1) < Seff (Un) the Un+1 is accepted
▶ otherwise Un+1 is accepted with p ∼ e−[Seff (Un+1)−Seff (Un)]

▶ Simulation of quantum system!
▶ For large number of the trajectories p(U) ∼ e−Seff (U)
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Applications

▶ Spectroscopy
▶ Matrix elements and correlations functions
▶ Thermodynamic properties of QCD
▶ Transport properties of QCD
▶ Phase transitions
▶ Nuclear physics
▶ Properties of QCD under extreme conditions

▶ High temperature
▶ Huge magnetic field
▶ Large baryon density
▶ Relativistic rotation
▶ ...

▶ Vacuum structure and topological properties
▶ Beyond the Standard Model at strong coupling
▶ ...
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Confinement in lattice simulation

▶ Small distances: V (r) = −4
3
αs(r)

r
Asymptotic freedom αs(r) ∼ − 1

log Λr |r→0 → 0
▶ Large distances V (r) = σphysr - Confinement
F = σ ≃ 160000 N

▶ To separate quarks one needs infinite energy
23



Confinement in lattice simulation

▶ Can be solved for one hour at modern laptop
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String breaking

from arXiv:1001.0570
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String breaking

▶ The string is not broken
▶ The string is broken
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Spectroscopy: Mesons
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Spectroscopy: Baryons
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What is matter composed of?

▶ The following law is well satisfied in nature
M ≃

∑
iMi

▶ In QCD
p(uud) Mpc

2 = 938 MeV ≫ (mu +mu +md)c
2 = 12 MeV

n(udd) Mnc
2 = 940 MeV ≫ (mu +md +md)c

2 = 15 MeV

▶ Where is the rest of mass?
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Chromoelectric fields in proton

▶ We are composed of gluons to 98%!
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QCD vacuum

▶ Is vacuum an empty space (ϵ = 0)?

▶ Vacuum is the state with the smallest energy
▶ QCD vacuum: ϵ ≃ −(265 MeV )4, ⟨H2 + E2⟩ ≠ 0
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QCD vacuum
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QCD vacuum
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QCD vacuum
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QCD vacuum
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QCD vacuum
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QCD vacuum
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Quantum (ultraviolet) fluctuations in QCD vacuum

▶ Classical vacuum is distorted by UV fluctuations
▶ The fluctuations take place at distances ∼ a 38



Model of dual superconductor
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Phase transitions

Experience from φ4-theory

▶ V (φ) = −m2

2 φ
2 + λ

4!φ
4

▶ Order parameter: ⟨φ⟩
▶ Z2-symmetry: φ→ (±1)φ

▶ V (φ) is invariant but not the ⟨φ⟩
▶ Low temperature phase Z2 is broken, ⟨φ⟩ ≠ 0

▶ High temperature phase Z2 is restored ⟨φ⟩ = 0 40



Condensation of monopoles
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Polyakov line

Gluodynamics

▶ Sl =
β
3

∑
n

∑
µ<ν ReTr[1− Uµν(n)]

▶ Polyakov line: ⟨P (x⃗)⟩ = TrP exp (i
∫ T
0 dx4Â4(x⃗, x

4))

▶ It is gauge invariant because periodic boundary conditions

▶ Z3 symmetry: U → e2πk/3iU, k = 0, 1, 2

▶ Sl is invariant but not the ⟨P (x⃗)⟩
▶ P = e−FQ/T

▶ Low temperature phase: ⟨P (x⃗)⟩ = 0, FQ = ∞, i.e. Z3 is
restored

▶ High temperature phase ⟨P (x⃗)⟩ ≠ 0, FQ = finite, , i.e. Z3

is broken
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Polyakov line

*hep-lat/0506019
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Static potential at finite temperature

▶ One needs the temperature
T ∼ 150 MeV ∼ 1.5× 1012 degrees
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Chiral symmetry breaking

▶ Left and right sectors of the theory do not interact

L = Ψ̄iD̂Ψ = Ψ̄iD̂

(
1 + γ5

2
+

1 − γ5

2

)
Ψ = Ψ̄iD̂

1 + γ5

2
Ψ+Ψ̄iD̂

1 − γ5

2
Ψ = Ψ̄RiD̂ΨR+Ψ̄LiD̂ΨL

▶ For Nf quarks chiral symmetry is SUL(Nf ) × SUR(Nf )

▶ Order parameter: chiral condensate ⟨Ψ̄Ψ⟩ = ⟨Ψ̄LΨR⟩ + ⟨Ψ̄RΨL⟩
▶ Dynamical chiral symmetry breaking SUL(Nf ) × SUR(Nf ) → SUV (Nf )

▶ The mechanism of chiral symmetry breaking is unknown
▶ It is connected to the confinement
▶ Some ideas can be gained from NJL model
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Chiral symmetry breaking

▶ NJL models are based on BCS theory

▶ The interaction term (ψ̄ψ)4

▶ αNJL < 1 no solutions, M = 0, E2 = p⃗2

▶ αNJL > 1 there is solution M ̸= 0, E2 = p⃗2 +M2

▶ Dynamical symmetry breaking

▶ The condensate of Cooper pairs: ⟨ψ̄ψ⟩ ≠ 0

▶ Condensate from vacuum!

▶ Too simple model: no confinement 46



Chiral condensate ⟨ψ̄ψ⟩

*arXiv:1005.3508
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QCD under extreme conditions

▶ Modern experiments: LHC(Switzerland), RHIC(USA),
FAIR(Germany), NICA(Russia, Dubna, JINR)
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QCD under extreme conditions

▶ Temperature T ∼ 150 MeV ∼ 1.5× 1012 degrees
▶ Baryon density n > n0
▶ Magnetic fields eB ∼ 1013 T
▶ Rotation with angular velocity ω ∼ 1022 c−1

▶ ... 49



QCD equation of state

▶ Low temperature: HRG

▶ High temperature: SB - Stefan Boltzmann: p = σT 4

▶ At very high temperature QGP is gas of quarks and qluons?

50



Shear viscosity of QGP

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

T/Tc

0.1

1.0
η/
s

fit
BG
perturbative
N = 4 SYM

CHPS
NS
M
MBFSS

▶ QGP is close to the ideal liquid (ηs = (1− 3) 1
4π )

▶ Considerable deviation from gas of quarks and gluons
▶ The result is close to the N=4 SYM η

s = 1
4π
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Shear viscosity of QGP

▶ QGP is the most superfluid liquid
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THANK YOU!
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