

BM@N — the first experiment at the NICA complex

Sergei Merts

on behalf of the BM@N collaboration

28/10/2024

Experiment is people

5 countries, 13 institutions and 214 participants

- University of Plovdiv, Plovdiv, Bulgaria
- Saint Petersburg State University, St.Petersburg, Russia
- Joint Institute for Nuclear Research, Dubna, Russia
- Institute of Nuclear Research of RAS, Moscow, Russia
- Shanghai Institute of Nuclear and Applied Physics, Shanghai, China
- NRC Kurchatov Institute, Moscow, Russia
- Moscow Engineer and Physics Institute, Moscow, Russia

- Skobeltsin Institute of Nuclear Physics, Moscow, Russia
- Moscow Institute of Physics and Technics, Moscow, Russia
- Lebedev Physics Institute of RAS, Moscow, Russia
- Institute of Physics and Technology, Satbayev University, Almaty, Kazakhstan
- Physical-Technical Institute of UzAS, Tashkent, Uzbekistan
- High School of Economics University, Moscow, Russia

S. Merts

Physics motivation for the BM@N experiment

Heavy ion collision experiments

BM@N competitors:

- HADES BES (SIS) Au+Au, $\sqrt{s_{NN}} = 2.42 \text{ GeV}$
- STAR BES (RHIC) Au+Au, $\sqrt{s_{NN}} = 3 200 \text{ GeV}$ (10⁹ events at 3 GeV in 2021)
- Future CBM experiment Au+Au, $\sqrt{s_{NN}} = 2.7 4.9 \text{ GeV}$

Goal of the BM@N experiment

Study symmetric matter EOS at $\rho/\rho_0 = 3 - 5$, $\rho_0 = 0.16$ fm⁻¹:

- elliptic flow of protons, mesons and hyperons
- sub-threshold production of strange mesons and hyperons
- extract nuclear incompressibility (Knm) from data to model predictions

EoS: relation between density, pressure, temperature, energy and isospin asymmetry $E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho) \cdot \delta^2 \delta = (\rho_n - \rho_p)/\rho$

Nuclear incompressibility:
$$K_{nm} = 9\rho^2 \frac{\partial^2}{\partial \rho^2} (E/A)|_{\rho=\rho_0}$$

Constrain symmetry energy E_{sym}:

- elliptic flow of neutrons vs protons
- sub-threshold production of particles with opposite isospin

Comparison HADES, STAR FxT, BM@N

Exp.	year	A+A	E _{kin} AGeV	Statistics	Ξ-	Ω^{-}	Hypernuclei	
HADES	2012	Au+Au	1.23	$7 \cdot 10^{9}$	×	×	×	
HADES	2019	Ag+Ag	1.58	$1.4 \cdot 10^{10}$	×	×	800 ³ _A H	
STAR FxT	2018	Au+Au	2.9	$3 \cdot 10^{8}$	10^{4}	×	$10^{4} \frac{3}{\Lambda} H$	
							$6 \cdot 10^{3} \frac{4}{\Lambda} H$	
STAR F×T	2021	Au+Au	2.9	$2 \cdot 10^{9}$	$7 \cdot 10^4$	×	$7 \cdot 10^4 \frac{3}{\Lambda} H$	
							$4 \cdot 10^4 \frac{4}{\Lambda} H$	
BM@N	sim.	Au+Au	3.8	$2 \cdot 10^{10}$	$5 \cdot 10^{6}$	10^{5}	$10^{6} \frac{3}{\Lambda} H$	
full							${}^4_{\Lambda}$ H, ${}^5_{\Lambda}$ He	
program							⁷ _A Li, ⁷ _A He	
							$10^2 \frac{5}{\Lambda\Lambda}$ H	

- ${\small \bigcirc}~$ Reaction rates: HADES \approx 20 kHz, BM@N \approx 20 kHz, STAR FxT \approx 2 kHz
- HADES and BM@N are complementary, no cascade hyperons (Ξ^- , Ω^-) at HADES
- ${\small \odot}~$ Statistics at BM@N ${\approx}70$ times higher (Ξ^-) than at STAR FxT

Experimental setup evolution

RUN-6 (2017) C + X @ 3.5-4.5 AGeV

RUN-7 (2018) Ar + X @ 3.2 AGeV

RUN-8 (2022-2023)

Xe + Csl @ 3.0, 3.8 AGeV

Experimental setup in the first heavy ion run

Magnet SP-41 (0) Vacuum Beam Pipe (1) BC1, VC, BC2 (2-4) SiBT. SiProf (5, 6) ■ Triggers: BD + SiMD (7) FSD, GEM (8, 9) CSC 1x1 m² (10) TOF 400 (11) DCH (12) TOF 700 (13) ScWall (14) E FD (15) Small GEM (16) CSC 2x1.5 m² (17) Beam Profilometer (18) EQH (19) EHCal (20) HGN (21)

The BM@N detector paper for the Xe+Csl run configuration NIMA 1065 (2024) 169532, arxiv:2312.17573

Collected data during Xe run

It was two energies of Xe beam:

- 507 · 10⁶ events @ 3.8 AGeV
- 48 · 10⁶ events @ 3.0 AGeV

Beam pipe

Total length of the vacuum ion beam pipe from Nuclotron to BM@N is about 160 m.

- Beam pipe in te SP-41 magnet is made of 1 mm thick carbon fiber;
- It consists of four parts with a non-flange connectors;
- FLUKA simulations have shown that the proposed beam pipe is well suited to guide the high intensity beam;
- First vacuum tests have shown an insignificant leakage level of side surfaces of the sample, vacuum up to 10⁻⁵ Torr.

Silicon Beam Tracker

Three silicon beam trackers with 32x32 orthogonal strips readout

- oplaced in beam pipe in 100 cm from each other
- rotated relative to each other by 30 degrees.

Main goals:

- To improve vertex resolution in transverse direction
- To monitor beam behavior during experimental run
- To reconstruct beam angles

Experimental efficiensies: 95,7%, 88.7%, 93.5%

Subsystems. Trigger detectors

Trigger detectors to be used in 2022:

- TO start signal for DAQ
- VC, BC beam trigger formation
- BD barrel detector for counting particles under high polar angle
- SiMD silicon multiplicity detector for counting particles under small polar angles
- FD fragment detector for vetoing non-interaction events and generating trigger for central and semi-central events

Inner tracking system

Inner tracking system consist of

4 forward silicon detectors

- 7 GEM stations (160 \times 80 cm²)
- Right after the target four stations of Silicon Forward Detector was installed
- Seven GEM stations covers the entire magnet aperture

Outer tracking system

Outer planes support tracks in downstream direction

- ${\rm \bigcirc}~$ Four small Cathod Strip Chambers (SmallCSC, $\approx 1 \times 1 \; m^2)$ placed around near Time-of-Flight (TOF-400)
- ${\rm \odot}~$ Large Cathod Strip Chamber (LargeCSC, $\approx 1.5 \times 2~{\rm m^2}$) placed in front of far Time-of-Flight (TOF-700)
- Two Drift Chamders (DCH) placed around far Time-of-Flight (TOF-700)
- ${\rm \odot}~$ One small GEM ($\approx 10 \times 10~{\rm cm^2})$ was installed after the outer tracking detectors crossing beam trajectory

S. Merts

Time-of-Flight system

Main system for PID

- 20 modules of ToF-400 placed between four small CSC to identify particles with low momentum
- 60 modules of ToF-700 placed between two DCH to identify particles with high momentum S. Merts

Calorimeters

Forward Hadron Calorimeter

- $\, \bigcirc \,$ 20 PSD CBM modules transverse size $20 x 20 \ \text{cm}^2$
- ${\small \bigcirc }~$ 34 MPD/NICA like modules transverse size 15x15 cm 2

Scintillation Wall

 registration of fragments in the ScWall allows to measure fragments multiplicities to tune parameters in fragmentation models

Hodoscope

- measurement of fragments charge in the FHCal beam hole
- ${\small \bigcirc}~$ 16 quartz strips with sizes $10 \times 160 \times 4~\text{mm}^3$
- \odot covers beam hole $15 ext{x} 15 ext{ cm}^2$

Main goals of the system:

- Centrality determination
- Reaction plane calculation

Current studies of experimental data

Current studies of experimental data

- $\,\circ\,$ Production of $\rho,\,d,\,t$ in 3.2 AGeV argon-nucleus interactions
- ${\hfill \circ}$ Production of π^+ and ${\rm K}^+$ mesons in 3.2 AGeV argon-nucleus interactions
- Collective flow of protons in Xe+CsI interactions
- Collective flow of hyperons in Xe+CsI interactions
- Λ and ${\rm K}^0_{\rm s}$ production in Xe+Csl interactions
- Search of $\Phi(1020)$ in Xe+Csl interactions
- Study of neutron emission from target spectators in Xe+Csl collisions

Most of these topics will be presented during AYSS-24

Search of hypernuclei in Xe+CsI collisions

(my current work)

What are hypernuclei?

In current work two-particle decays only

$$^{3}_{\Lambda} {
m H}
ightarrow {}^{3}{
m He} + \pi^{-}$$
 $^{4}_{\Lambda} {
m H}
ightarrow {}^{4}{
m He} + \pi^{-}$

Why hypernuclei are interesting?

Two directions of research

Simulated data

- Helps to develop, test and tune algorithms
- Gives algorithm efficiency

Experimental data

- The main goal of research
- Analysis of hypernuclei production, lifetime estimation etc

Two particle decay

$$^{3}_{\Lambda}\text{H}
ightarrow ^{3}\text{He} + \pi^{-}$$

- ³He could be selected in momentum range \approx 0.5 3.5 GeV/c
- Impossible to separate ⁴He from deuterons

It's not enough to have a ToF technique to identify helium

$$^4_\Lambda {
m H}
ightarrow {
m ^4He} + \pi^-$$

ToF identification plot

dE/dx in GEM

Let's try to use GEM detectors for dE/dx extimation

- It was 7 GEM stations in the last experimental run.
- Each track has 1-7 GEM hits, so the energy loss could be estimated as

$$\langle \frac{dE}{dx} \rangle = \frac{\sum_{i=1}^{N} q_i}{N}, \text{ where } N > 3, q_i - \text{hit signal}$$

- **dE/dx** has Landau distribution, so the mean value is shifted by the reason of long "tail".
- The truncated mean was used for analysis (40% hits on track with maximal signal were removed).

Number of GEM hits	3	4	5	6	7
Used hits	2	2	3	4	4
In percent	67	50	60	67	57

GEM signal scaling

The goal: to equalize distributions in the horizontal direction

Linear transformation:

 $L_1 = a \cdot L_2 + b$

 $\mathsf{R}_1 = \mathsf{a} \cdot \mathsf{R}_2 + \mathsf{b}$

dE/dx in GEM

Signals from 7 GEM detectors

before scaling

GEM dE/dx vs mass

Experimantal data

 ${}^{3}\mathsf{H}_{\Lambda}$ ${}^{4}\mathsf{H}_{\Lambda}$ Entries / (2 MeV/c²) 3000 Entries / (2 MeV/c²) 1000 2500 800 2000 600 1500 Parameters: Parameters: S = 286 S / B = 0.10 $S / \sqrt{S + B} = 5.20$ S = 836 S / B = 0.06 400 1000 $S / \sqrt{S + B} = 7.07$ $\mu = 2.9923$ $\mu = 3.9253$ 200 500 $\sigma = 0.0025$ $\sigma = 0.0017$ 0 3.88 3.9 3.92 3.94 3.96 M_{4He+ x}, GeV/c²

Conclusion

- BM@N energy range is very promising (study of EoS, hypernuclei, (multi-)hyperons, collective flow ...).
- BM@N already recorded experimental data from a set of technical runs (carbon, argon-krypton). Physics analysis of data is in its active phase, results expected to be published in the nearest future.
- The longest and successful experimental run with heavy ions was held in 2022-2023.
- Physics analysis of charge particles, hyperons and hypernuclei production, flows etc. for new Xe data is ongoing.

Be a man*

*of our great team