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From Galileo Galilel to Computer Tomography
Georgy Shelkov (JINR,DLNP)  JINR AYSS Conference 30 October 2024

My personal point of view on some facts 1n the history of Science

Outline:
" Introduction.
* History of the discovery of X-rays and the 1dea of X-ray tomography.

" Implementation of the 1dea of computed tomography.

" Trends 1n the development of computed tomography.

" (Conclusion.
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| want to start by asking you a question:

Which invention of Humanity or Mankind most significantly distinguishes
us now from all other animals on Earth?
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| want to start by asking you a question:

Which invention of Humanity or Mankind most significantly distinguishes
us now from all other animals on Earth?

Ability to record the results of their activities!
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| want to start by asking you a question:

Which invention of Humanity or Mankind most significantly distinguishes
us now from all other animals on Earth?

More than 3000 year old the Humankind is writing the
Book of Knowledge.

P at® P I S e 4t L & s T TRy - PN . Pt -
. . . R #




3 ww‘mwﬁmmwl_ﬂ_ B s S A A Ry

&P So e Bl iy S i, - AP e iy

| want to start by asking you a question:
Which invention of Humanity or Mankind most significantly distinguishes
us now from all other animals on Earth?

More than 3000 year old the Humankind is writing the
Book of Knowledge.
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Which invention of Humanity or Mankind most significantly distinguishes
s now from all other animals on Earth?

More than 3000 year old the Humankind 1s writing the
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Introduction

I began my brief introduction to the history of physics (which 1s an

experimental science!) with Galileo Galile1 because he was the first
experimentalist known to me.
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Introduction

I began my brief introduction to the history of physics (which 1s an

experimental science!) with Galileo Galile1 because he was the first
experimentalist known to me.
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I began my brief introduction to the history of physics (which 1s an

experimental science!) with Galileo Galile1 because he was the first
experimentalist known to me.
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The next step I want to remind you 1s that everything that surrounds us and
without which we cannot imagine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.

Electricity




. Introduction

.

AT S e o

The next step I want to remind you 1s that everything that surrounds us and
without which we cannot imagine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.
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The next step I want to remind you 1s that everything that surrounds us and
without which we cannot i1magine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.
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Introduction

The next step I want to remind you 1s that everything that surrounds us and
without which we cannot i1magine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.

Electricity

William Gilbert Charles Coulomb Michael Farada
~ 1600y ~ 1787y ~ 1821y
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Introduction

The next step I want to remind you 1s that everything that surrounds us and
without which we cannot i1magine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.

Electricity

Villiam Gilbert Charles Coulomb Michael Faraday James Maxwell
~ 1600y ~ 1787y ~ 1821y ~ 1873y
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The next step I want to remind you 1s that everything that surrounds us and
without which we cannot imagine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.
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The next step I want to remind you 1s that everything that surrounds us and
without which we cannot imagine our life - was once the subject of study of
fundamental science. I will show this using electricity as an example.
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Semiconductqrs and so on...
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Introduction
Semiconductors and so on...
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J.Bardeen; W.Brattain ~ 1948

~10 y only !!
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First transistor
plant ~1960
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J.Bardeen; W.Brattain ~ 1948

~10 y only !!
Nobel prize 1956y

For their researches on
semiconductors and discovery
of the transistor effect

First transistor
plant ~1960
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Current status of X-ray tomography (CT) devices
and development prospects.




Current status of X-ray tomography (CT) devices
and development prospects.

The main working tools of physicians and biologists at the beginning of the XX century.




Current status of X-ray tomography (CT) devices
and development prospects.

' The main working tools of physicians and biologists at the beginning of the XX century.




A little about the history of computed tomography (CT)




A little about the history of computed tomography (CT)




A little about the history of computed tomography (CT)

For this discovery, K. Roentgen was awarded
the first Nobel Prize in physics 1n 1901




A little about the history of computed tomography (CT)
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For this discovery, K. Roentgen was awarded ~ '
the first Nobel Prize in physics in 1901 Ny




A little about the history of computed tomography (CT)

1 900 The idea of computed tomography (CT) A. Walleben
1 917 John Radon has mathematically proven that a 3D
§reconstruction can be made from an infinite number of 2D images.

Johann Radon
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Why does 1t take so long (70 years!) between this 1idea and implementation?

“Computers” in the first half of the 20th century
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Why does 1t take so long (70 years!) between this 1idea and implementation?

“Computers” in the first half of the 20th century

N0 7 A R R

3 3 3 2 x

3

& w5 a5 ol |
5 5 |45
I 6‘E ‘6 eIel {
. 7 7 7‘ |7 |
(RERERERE J

"9

— - -

I
- e wmmy e

CO0oop
@5@@@@@

9
8
7
3
5
4
3
2
L

| =HINwls o lo|~|o|o
| = nfw s |ojo|~|ofo
iafnwis olojNiolo
lalvlwisloolvolo
- soec@@eEe

e
8
(6
(1)

=
2 S0®

The latest achievements of science and technology were and are
still being used in the creation of CT scanners !!
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How a 2D X-ray image differs from a 3D CT scan ?
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How a 2D X-ray image differs from a 3D CT scan ? |
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- How a 2D X-ray image difters from a 3D CT scan ? -

0 @ e
o About 70 years have passed since the creation of the first CT
s scanner in 1971. The schematic diagram remains the same:

* X-ray tube;

- X-ray detector;

movement mechanics unit;

edata processing system.
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How a 2D X-ray image differs from a 3D CT scan ?
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About 70 years have passed since the creation of the first CT
scanner in 1971. The schematic diagram remains the same:
* X-ray tube;
* X-ray detector;
*movement mechanics unit;
edata processing system.

In the following we will consider the situation with X-ray image -
detectors - the most high-tech elements of modern CT scanners. -
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What are the features/difficulties of x-ray image registration?
An ideal image detector should be not transparent to the type of radiation it detects and

absorb it completely.

Examples for visible light: the retina of the eye, photographic films, CCD matrices
(made from silicon) in modern gadgets.
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What are the features/difficulties of x-ray image registration?

An ideal image detector should be not transparent to the type of radiation it detects and

absorb it completely.
Examples for visible light: the retina of the eye, photographic films, CCD matrices
(made from silicon) in modern gadgets.

Well known that particle detectors can only register charged particles. It 1s
possible to register a neutrally one too (for example, X-rays) if this particle could
“turn" 1nto a low-energy gamma quantum (visible light)
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What are the features/difficulties of x-ray image registration?

An ideal image detector should be not transparent to the type of radiation it detects and

absorb it completely.

Examples for visible light: the retina of the eye, photographic films, CCD matrices

(made from silicon) in modern gadgets.

Well known that particle detectors can only register charged particles. It 1s
possible to register a neutrally one too (for example, X-rays) if this particle could

“turn" into a low-energy gamma quantum (visible light) or a charged particle.
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What is a modern detector for registration of X-ray images?

What X-ray sources are used in CT scanners?
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What is a modern detector for registration of X-ray images?

What X-ray sources are used in CT scanners?

Almost all CT scanners use X-ray tubes as a source of X-rays. This 1s a cheap and
mass-produced device. X-ray tubes produce X-rays in a wide energy spectrum.
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What is a modern detector for registration of X-ray images?

How can an X-ray be “turn” to a charged particle?
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What is a modern detector for registration of X-ray images?

How can an X-ray be “turn” to a charged particle?

For the energy range of X-rays from an X-ray tube ~(10-100)kV, the main effect by which
an X-ray can "turn" into a charged electron 1s the photo-effect in the substance.
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What is a modern detector for registration of X-ray images?

How can an X-ray be “turn” to a charged particle?

For the energy range of X-rays from an X-ray tube ~(10-100)kV, the main effect by which
an X-ray can "turn" into a charged electron 1s the photo-effect in the substance.

The cross section (probability) of this effect 1s described by such a formula. It 1s clear from 1t
that probability depends very strongly on the charge of the nucleus or the ordinal number
(Z.) 1n the periodic table.
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What is a modern detector for registration of X-ray images?

How can an X-ray be converted into a charged particle?

The problem is that silicon (Si) absorbs visible light very well, but is practically transparent to X-rays.

That is why the currently widespread X-ray image detectors use a two-stage registration principle:

X-rays are converted to light in heavy scintillator crystals (Csd, ...); and this light is detected in Si-based
photodetectors.

The main disadvantage of this scheme is that the possibility of measuring the energy of the absorbed

X-ray quantum is lost.
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The problem is that silicon (Si) absorbs visible light very well, but is practically transparent to X-rays.

That is why the currently widespread X-ray image detectors use a two-stage registration principle:

X-rays are converted to light in heavy scintillator crystals (Csd, ...); and this light is detected in Si-based
photodetectors.

The main disadvantage of this scheme is that the possibility of measuring the energy of the absorbed

X-ray quantum is lost.
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Block diagram of a hybrid pixel semiconductor detector

Pixel ASIC

Sensor

The dimension of the pixel Medipix chip (ASIC) is (14x14) mm2 and

it contains (256x256=65536) independent registration channels
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2 - S/C sensor (Si,GaAs,CZT,...)
3 - metal pixel structure on sensor
4 - metal bump for connecting sensor&chip 15
5 -metal pixel structure on chip
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Block diagram of a hybrid pixel semiconductor detector

Pixel ASIC
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The dimension of the pixel Medipix chip (ASIC) is (14x14) mm2 and
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Measurement of the y-quantum energy provides a unique opportunity to
identify a material by the K-line in the X-ray absorption spectrum.
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Algorithms for selection in radiography/tomographic images of various materials using
information about the energy of registered photons.

Together with chemists from Moscow State University, work is underway to create new
types of contrast agents based on lanthanides. (RNF grant 22-15-00072)

| | [ | | |
| |
>;):))ll);:))y))»))!)))))3)!)))))))))))))))))3;7:))7!’)))).‘))})))))))))))))))a))))).‘})))))))))))))))))))))':))7))))))’)ll1))?"

Classic grey 3D phantom reconstruction = The same data reconstructed taking
with La, Nd and Gd samples into account energy information:
La - red; Nd - blue and Gd - green.




During the mitial period (2013-2022) of the
project, we mastered in detail the work with a
promising new class of hybrid pixel semiconductor

detectors. But all these detectors were developed
by other laboratories (Medipix, CERN)
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During the nitial period (2013-2022) of the
project, we mastered in detail the work with a
promising new class of hybrid pixel semiconductor

detectors. But all these detectors were developed
by other laboratories (Medipix, CERN)

A key element in the design of such detectors is a pixel chip.
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Human foot CT obtained from the first full-scale tomograph with
Medipix3-RX ASIC at Crischurch University in New Zealand.




Human foot CT obtained from the first full-scale tomograph with
Medipix3-RX ASIC at Crischurch University in New Zealand.
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If what I told interested you
and you are smart enough to make the right conclusion,
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If what I told interested you

and you are smart enough to make the right conclusion,
we 1nvite you to join our group!

You are welcome!
It will be difficult, but interesting!

If you have questions that I can answer - ask me now.
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Thank you for your attention!
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