
1

Workload management system for SPD Online Filter

N. Grebena, 1, D. Oleynika, 2, L. Romanycheva, b

a Joint Institute for Nuclear Research, Dubna, Russia
b St. Petersburg State University, St. Petersburg, Russia

The paper provides details and an update on the Workload Management System Middleware along-
side Pilot Agent, that are part of SPD Online Filter — computing system dedicated for multi-step high-
throughput processing of data from Data Acquisition System of SPD NICA detector.

INTRODUCTION

«SPD Online filter» is a computing system that performs multi-step high-through-
put processing of primary data from the SPD NICA detector, that will serve as a soft-
ware trigger [1]. In order to perform one step in the processing chain, tasks will be cre-
ated on the specified dataset, which is defined as a logical grouping of files designed to
serve as the unit of data processing. Given that each file, aggregated by the data acquisi-
tion system (DAQ), can be processed simultaneously, the high-throughput paradigm can
be readily applied, with a focus on the efficient execution of a substantial number of
loosely coupled jobs [2]. A task is defined as a set of input data and a handler that per-
forms the requisite processing step and generates a dataset with the resulting output
data. The objective of the entire task is to fully process the input dataset. The total out-
put data from all jobs constitutes the output of the entire task.

The Workload Management System is currently being developed with the objective
of creating an adequate number of jobs and controlling their execution on compute
nodes [3]. It is expected to follow a number of requirements:

· Task registration: formalized task description, including job options and re-
quired metadata registration;
· Jobs definition: generation of required number of jobs to perform task by con-

trolled loading of available computing resources;
· Jobs execution management: continuous job state monitoring by communication

with Pilot, job retries in case of failures, job execution termination;
· Consistency control: control of the consistency of information in relation to the

tasks, files and jobs;
· Scheduling: implementing priority-based job scheduling to ensure that high-pri-

ority jobs get access to compute resources faster.

MIDDLEWARE

SPD DAQs divides the sensor signals into time blocks and transmits the data to the
input buffer of the «SPD Online filter» as files of a consistent size. Concurrently, the
Data & Storage Management System (DSM) receives information about these files for
the purpose of initial registration [4]. Workflow Management System (WfMS) acquires

1 E-mail: ngreben@jinr.ru
2 E-mail: danila@jinr.ru

2

2

the registered input datasets and initiates the processing chain based on the predefined
CWL-template.[4]. This information is then supplied to the Workload Management
System (WMS) as part of the task description. WMS requests information regarding the
contents of the dataset and subsequently generates job instances that are dispatched to
Pilots. In essence, WMS populates datasets with information about the resulting files,
which serve as an input dataset for the subsequent step of the workchain. Throughout
the data processing stages, Pilots engage in reading and writing files to storage, thereby
creating secondary data. Based on this dataflow, the following inter-service interaction
scenarios have been defined with the WfMS:

· Registration of a task for processing: WfMS passes the task description into the
message broker to WMS;
· Summary of current intermediate properties of jobs/files in the system: aggre-
gated information about the status of each jobs/files for further decision making on
what to do with current task and correspondent dataset;
· Task cancellation: based on the decision made by WfMS;
· Change priority of a task: to accelerate the rate at which the corresponding
dataset is being processed.
WMS generates a set of jobs by receiving the necessary file metadata from the

DSM Manager (Data Catalog REST API). WMS is also responsible for creating new
files in the system after a job payload has been executed by Pilot, which must be tagged
in the file catalog. Another obligation is to close the dataset after the critical number of
successfully processed files has been reached. The processing of requests to delete/close
datasets and register new files in the system is handled by DSM-Register — a data
event processor microservice that processes incoming messages from RabbitMQ [5],
validates them, and calls the data catalog.

WORKLOAD MANAGEMENT SYSTEM

The system has been split into two similarly structured subdomains (see Fig. 1):
· Task Management: manages tasks, with Task Manager for creating and manag-

ing tasks in PostgreSQL database [6], Task Register that acts as a message gateway
with RabbitMQ, and a Task Executor that generates jobs from a task-based template
and interacts with a Data & Storage Management System.
· Job Management: similar in structure to the Task Management, but at the job

level, with components such as Job Manager (handles job creation, updates, and pri-
ority), Job Register (queues and registers jobs), Job Executor (distributes jobs to pi-
lots), and Job Watchdog (monitors jobs statuses).

Such decomposition allows for modularization, as each module can encapsulate a
set of specific functionalities that are developed, maintained, and deployed separately.
This is done with respect to message gateway microservices (Task/Job Register) and
data validation, which are put into different Python modules.

Task/Job Manager implements a data access layer, the remaining microservices can
be thought of as stateless. They only read data from a database, but do not maintain any
internal session or persistent state between requests, so that improves flexibility, as the
underlying database or its structure can be changed without impacting dependent ser-
vices. The Job Manager (DB API microservice) can be scaled independently to handle
increasing write/update loads, while other microservices focus on their specific respon-

3

sibilities. For example, the Job Executor retrieves chunks of jobs and dispatches them to
Pilots. Once dispatched, it does not maintain in-memory information about those jobs,
so it merely acts as a coordinator between the database and the pilots.

Fig. 1. Workload Management System High-Level Architecture

PILOT AGENT

The Pilot is a lightweight agent script that is executed and managed by a persistent
UNIX daemon on compute nodes (see Fig. 2). Its main goals are to orchestrate the exe-
cution of jobs by preparing the environment, running jobs in isolated subprocesses, ana-
lyzing results, and reporting statuses to the Workload Management System. This in-
volves setting up and tearing down the execution environment, handling input/output
file transfers, and storing logs and results. Additionally, Pilot aims to provide continu-
ous monitoring and reporting of job state, handle external control commands (cancelling
jobs), validate jobs before execution, manage unexpected failures, and maintain system
resilience despite individual job errors. The daemon ensures Pilot is always up-to-date
by downloading the latest version from a repository and restarting it after each execu-
tion or failure, enabling fault-tolerant and continuously operational job processing.

During the preprocessing stage Pilot performs the following operations: initializes
logging mechanisms to capture operational details and job-specific information; loads
necessary configuration parameters, including node specifics; retrieves a job from the
message queue provided by the Job Executor which corresponds to available co-proces-

4

sors on a node; and ensures the retrieved job is valid before processing (e.g., correct job
format; dependencies available).

After the preprocessing stage Pilot starts a new thread to manage its execution. It
starts a job initialization or environment set up, executes scripts to create the environ-
ment for job execution, after which retrieves input files from the designated input stor-
age system. The job is started in a separate subprocess, isolating its execution from the
main Pilot process. After execution, the job’s output is analyzed to determine if it was
successful or if errors occurred. On any significant job status change or internal update,
a Pilot sends a status update message to the WMS, which is collected by the ASGI web
server [7]. The payload for a job at this stage is artificial, as it requires applied software
and simulated data to be ready.

Workload Management System can terminate the active job thread of a Pilot if the
corresponding task is canceled by the Workflow Management System or if an error oc-
curs that prevents the job from being completed successfully.

Fig. 2. Pilot Agent Architecture

CONCLUSIONS

Some clarifications and changes were made to the inter-service interaction scenar-
ios, which entailed defining API contracts with the Workflow Management System and
the Data & Storage Management System. The architecture of the Workload Manage-
ment System underwent a slight change, introducing message gateway and job monitor-
ing microservices. The middleware backbone and main microservices were imple-
mented, and the project was decomposed into a set of reusable modules that can be
shared not only within the Workload Management System, but also within the «SPD
Online filter» as a whole. The internal architecture of the pilot agent was designed and
implemented in conjunction with the UNIX daemon.

The next phase of development will entail the execution of the entire workflow,
which constitutes a chain of interdependent tasks established at the level of the Work-

5

flow Management System. Another objective is to integrate with the applied software
and execute a workflow on a simulated data.

REFERENCES

1. V.M. Abazov et.al [SPD Collaboration] Technical Design Report of the Spin
Physics Detector at NICA // arXiv: 2404.08317 [hep-ex]

2. Sadiku M., Eze K., Musa S., High-Throughput Computing. // International Journal
of Trend in Research and Development. – 2018 – Volume 5 – Issue 4 – ISSN:
2394-9333

3. Greben, N., Romanychev, L., Oleynik, D., Degtyarev, A. SPD On-Line Filter:
Workload Management System and Pilot Agent. Phys. Part. Nuclei 55, 612–614
(2024)

4. Tereschenko, D., Ponomarev, E., Oleynik, D., Korkhov, V. SPD On-Line Filter:
Workflow and Data Management Systems. Phys. Part. Nuclei 55, 603–605 (2024)

5. RabbitMQ Message Broker [Electronic resource] // URL: https://www.rabbitmq.-
com/ (accessed: 22.11.2024)

6. PostgreSQL: The World's Most Advanced Open Source Relational Database [Elec-
tronic resource] // URL: https://www.postgresql.org/ (accessed: 22.11.2024)

7. ASGI (Asynchronous Server Gateway Interface) Specification [Electronic re-
source] // URL: https://asgi.readthedocs.io/en/latest/specs/main.html (accessed:
22.11.2024)

