The data fitter of neutrino oscillation experiments in the GNA software Аппроксимация данных нейтринных осцилляционных экспериментов в программном обеспечении GNA

A. Stepanova^{a,1}, L. Kolupaeva^a A.B. Степанова^{a,1}, Л.Д. Колупаева^a

^{*a*} Joint Institute for Nuclear Research

^а Объединенный институт ядерных исследований

Физика нейтрино активно развивается в течение последних нескольких десятилетий, однако до сих пор существует ряд открытых вопросов. Одной из актуальных задач является измерение параметров нейтринных осцилляций, таких как фаза комбинированной четности $\delta_{\rm CP}$, иерархия масс нейтрино и октант угла смешивания θ_{23} . Одним из способов достичь высокого уровня значимости для этих величин является объединение данных, полученные в различных экспериментах. Работающие в настоящее время ускорительные нейтринные эксперименты, NOvA и T2K, регистрируют взаимодействия нейтрино в модах появления электронных (анти-)нейтрино и в модах исчезновения мюонных (анти-)нейтрино, и их данные на сегодняшний день являются основным источником информации для оценки неизвестных параметров осцилляций. В программном обеспечении GNA создан метод ашроксимации данных ускорительных нейтринных экспериментов и построены двумерные контуры индивидуальных и совместных чувствительностей к Δm_{32}^2 , $\delta_{\rm CP}$ и $\sin^2 \theta_{23}$ для экспериментов NOvA и T2K на основе Монте-Карло моделирования и данных Азимова.

Neutrino physics has been actively developing for a last few decades, but there are still some questions to answer. One of actual tasks is to measure neutrino oscillation parameters such as the charge-parity phase $\delta_{\rm CP}$, the neutrino mass ordering and the octant of mixing angle θ_{23} . One of the ways to reach a high significant level for these values is to combine data taken from different experiments. Currently working neutrino accelerator experiments, NOvA and T2K, have been detecting neutrino interactions in electron (anti-)neutrino appearance and muon (anti-)neutrino disappearance modes and nowadays these data are the main set to estimate unknown neutrino oscillation parameters. The data fitter of accelerator neutrino experiments is created within the GNA software and two-dimensional contours of individual and joint sensitivities to Δm_{32}^2 , $\delta_{\rm CP} \mbox{ Ising } \theta_{23}$ for NOvA and T2K experiments are plotted based on Monte-Carlo simulation and Asimov data.

PACS: 14.60.Lm; 14.60.Pq

Введение

GNA (Global Neutrino Analysis) [1] – это программное обеспечение (ПО) для выполнения анализа данных, полученных в экспериментах разного

¹E-mail: as592454@gmail.ru

типа: ускорительных, реакторных, атмосферных и солнечных. ПО GNA было разработано в Лаборатории ядерных проблем ОИЯИ и включает функции-преобразования, написанные на языках программирования C++ и Python, а также использует методы и классы пакета ROOT CERN [2]. Для проведения статистического анализа данных в ПО GNA реализованы необходимые функции, такие как функции минимизации, сканирования и т.д. [3]. Во время задания модели нейтринного эксперимента в ПО GNA создаётся граф, состоящий из блоков, имеющий ряд особенностей. Вопервых, создание графа позволяет контролировать корректность задания модели, поскольку каждому этапу вычислений соответствует наглядное представление. Во-вторых, возможно добавлять или убирать блоки во время аппроксимации (свойство «extensibility»). Также, в каждой точке выполняется пересчёт не всей модели, а только тех частей, которые изменяются (свойство «lazy evaluation»). Такой подход делает процесс вычислений более быстрым и эффективным.

Метод аппроксимации данных в ПО GNA

Для выполнения осцилляционного анализа данных на первом этапе рассчитываются энергетические спектры нейтрино. Для этого в ПО GNA задается конфигурационный файл эксперимента в формате YAML, где указываются пути для файлов, содержащих значения потоков нейтрино и антинейтрино различных флейворов, величины возможных типов сечений взаимодействия нейтрино с веществом детектора и эффективности регистрации детектора, а также характеристики для размытия энергии в бинах. В данном файле описывается и деление на моды с сигнальными и фоновыми каналами, а также задаются параметры эксперимента (доверительный объем детектора, длина базы осцилляций, т.е. расстояние между ближним и дальним детекторами, диапазон энергий и т.д.) и осцилляционные параметры, которые во время аппроксимации могут быть фиксированными, ограниченными или свободными. На втором этапе полученные числа событий вместе с внешним набором данных подаются в стандартную логарифмическую функцию Пуассона, реализованную в ПО GNA, для расчёта значений χ^2 в различных точках пространства осцилляционных параметров. Учёт ограниченных параметров добавляется в виде штрафных членов. Таким образом, с помощью аппроксимации данных в ПО GNA можно рассчитать чувствительности экспериментов к измерению неизвестных параметров осцилляций. Такими параметрами в парадигме 3-х флейворов нейтрино Стандартной Модели физики элементарных частиц являются знак расщепления масс нейтрино Δm^2_{32} («+» соответствует нормальной иерархии масс нейтрино, а «-» — обратной), фаза комбинированной четности $\delta_{\rm CP}$ и октант угла смешивания θ_{23} . Одновременно три эти параметра измеряются в ускорительных нейтринных экспериментах с длинной базой. На сегодняшний день набирают данные два таких эксперимента: NOvA (NuMI Off-axis ν_e

Fig. 1. Энергетические спектры для эксперимента NOvA, полученные в ПО GNA с набором данных Азимова на 2020 г.

Fig. 2. Энергетические спектры для эксперимента T2K, полученные в ПО GNA с набором данных Азимова на 2020 г.

Арреагапсе), расположенный в США [4], и Т2К (Tokai to Kamioka) в Японии [5].

В ПО GNA для эксперимента NOvA были рассчитаны энергетические спектры нейтрино в 6 модах (рис. 1): 4 моды $\nu_e/\bar{\nu}_e$ появления в соответствие с большими и малыми значениями классификатора нейтринных взаимодействий (High/Low PID) и 2 моды $\nu_{\mu}/\bar{\nu}_{\mu}$ исчезновения. Для эксперимента T2K были рассчитаны числа событий для 5 мод (рис. 2): 2 моды $\nu_e/\bar{\nu}_e$ появления, 1 мода ν_e появления с сигнатурой одного запаздывающего электрона в детекторе от процесса с рождением одного пиона и 2 моды $\nu_{\mu}/\bar{\nu}_{\mu}$ исчезновения.

На рис. 3 представлены двумерные контуры на плоскости неизвестных параметров осцилляций, полученные в ПО GNA, для NOvA и T2K. В качестве данных использовались данные Азимова с параметрами осцилляций, которые соответствуют наилучшим значениям аппроксимации экспериментов в 2020 году. Индивидуальные модели экспериментов пред-

Fig. 3. Двумерные контуры с уровнями значимости 68%, 90% в предположении нормальной иерархии масс нейтрино для экспериментов NOvA и T2K: индивидуальные (а, б) (сплошная линия – для NOvA, пунктирная – для T2K) и совместные (в, г), полученные в ПО GNA с набором данных Азимова на 2020 г.

почитают различные наилучшие значения аппроксимации параметров осцилляций. Например, NOvA исключает значение $\delta_{CP} = 3\pi/2$, в то время как наилучшее значение δ_{CP} для T2K находится в этой области (рис. 3a). Тем не менее, статистическая значимость этого расхождения небольшая. Выполненная совместная аппроксимация NOvA + T2K (рис. 3в, 3г) с данными Азимова является важной вехой на пути к первому совместному анализу данных этих экспериментов в ПО GNA.

Будущая глобальная аппроксимация в ПО GNA

Реализованный в ПО GNA метод аппроксимации данных ускорительных нейтринных экспериментов позволит проводить совместный осцилляционный анализ данных экспериментов различного типа. В табл. 1 представлены действующие нейтринные осцилляционные эксперименты и эксперименты, которые уже завершили свою работу. Также существует целый ряд будущих нейтринных осцилляционных экспериментов, а именно JUNO, DUNE, T2HK, KM3NeT ORCA, ESS ν SB и т.д. В зависимости от энергетического диапазона и методов регистрации событий эти эксперименты нацелены на измерение различных параметров осцилляций.

		-	
Тип	Эксперименты	Параметры	Энергия
Солнеч.+KamLAND	Homestake, GALLEX/GNO, SAGE, Borexino, SNO, SuperK + KamLAND	$\Delta m^2_{21}, \ \theta_{12}$	0.1—20 МэВ
Реакторные	RENO, Double Chooz, Daya Bay	$\Delta m^2_{31}(\Delta m^2_{ee}), \ \theta_{13}$	1—8 МэВ
Ускорительные	MINOS, K2K, T2K, NOvA	$\Delta m_{32}^2, \ \theta_{23}, \ \delta_{CP}$	0.1–10 ГэВ
Атмосферные	IceCube DeepCore, SuperK	$\Delta m^2_{31}, \ \theta_{23}$	0.1—100 ГэВ

Table 1. Нейтринные осцилляционные эксперименты

Совместный анализ данных нейтринных экспериментов является конечной целью данной работы и способом увеличить чувствительность к параметрам осцилляций по сравнению с индивидуальными экспериментами, а также средством избежать вырождений параметров.

Благодарности

Авторы благодарны А.И. Калиткиной и М.О. Гончару за техническую помощь при разработке метода аппроксимации данных в ПО GNA.

Поддержка

Работа выполнена при финансовой поддержке Российского научного фонда № 24-72-00048.

Конфликт интересов

Авторы утверждают, что они не имеют конфликта интересов.

REFERENCES

- 1. Global Neutrino Analysis, GNA // gna.pages.jinr.ru/gna.
- Brun R., Rademakers F. ROOT: An object oriented data analysis framework // Nucl. Instrum. Meth. A. - 1997. - V. 389. - P. 81-86.
- 3. Git репозиторий для ПО GNA // git.jinr.ru/gna/gna.
- 4. Acero M.A. et al. [NOvA Collaboration] Improved measurement of neutrino oscillation parameters by the NOvA experiment // Phys. Rev. D. 2022. V. 106, no. 3. P. 032004. arXiv:2108.08219.
- 5. Abe K. et al. [T2K Collaboration] Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×10^{21} protons on target // The European Physical Journal C. 2023. V. 83.