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We investigate four-dimensional renormalisible gauge-Yukawa theory with all
possible dimension-4 operators which exhibit Asymptotic Safety. We calculated all
β-functions and interacting ultraviolet fixed points at 2-loop for gauge, 1-loop for
Yukawa and scalar fields.
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Introduction4

In this contribution, we discuss 4d gauge theories coupled to matter. The5

main reason for this consideration is related to the Standard Model (SM),6

which works very well for a wide range of phenomena. Moreover, it is a gauge7

theory that has a semi-simple gauge structure. Thus, it seems reasonable to8

be interested in the behavior of these sorts of theory. We know very well9

that such theories can be asymptotically free [1, 2]. It is interesting to find10

out if there are any other new possibilities for constructing ultraviolet (UV)11

complete theories.12

Asymptotic safety (AS) [3,4] suggests some extension of asymptotic free-13

dom, where couplings in deep UV develop a fixed point (FP). Therefore, the14

theory remains interactive in high energies.15

In this contribution, we consider an asymptotically safe model, calculate16

all β-functions for gauge, Yukawa, scalar fields, and find partly intercating17

fixed point and scaling exponents.18

Renormalisation group and UV fixed points19

Firstly, let us consider the renormalization group equations (RGE). The20

running couplings flow is described by β-functions that will be entirely de-21

termined by field content and symmetries of particular theory22

∂λi
∂ log µ

= βi({λ}). (1)

In perturbation theory the β-functions are calculated through an expan-23

sion in terms of the couplings as24

βλ = c1λ
2 + c2λ

3 + ... (2)
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field SU(Nc) UL(Nf ) UR(Nf )
ψL Nc Nf 1
ψR Nc 1 Nf

H 1 Nf N̄f

Table 1. Model content with corresponding representations under gauge and global
symmetry

and then these coefficients are determined by the particular theory of interest.25

The main reason to be using perturbation theory is that a lot of the heavy26

lifting has already been done [5–7] for general four dimensional field theories.27

In particular in this contribution, we are interested in fixed points. This28

is points where the β-functions vanish29

βi({λ}) = 0. (3)

Thus, depending on what happens to trajectories when they come in the30

vicinity of these fixed points we can classify them in terms of UV limµ→∞ λ(µ) =31

λ∗ or IR limµ→0+ λ(µ) = λ∗ theories. We are interested in ultraviolet fixed32

points, which will allow us to define QFT up to highest energies.33

There are possible two options for the fixed point. Either all couplings34

are zero λ∗ = 0 or all couplings are non-zero λ∗ ̸= 0 or some of couplings are35

non-zero at least now. In perturbation theory this is valid if we have small36

couplings 0 < |λ∗| ≪ 1. This means that the couplings must be much less37

than one. We will consider cases where they are non-zero.38

There are necessary ingredients for perturbative asymptotic safety to be39

realised, see Ref. [8] for more details. In the next section we will consider a40

model in which it is possible to achieve AS.41

Model42

Let us consider a four-dimensional, renormalizable QFT with SU(Nc)43

gauge group and U(Nf )L×U(Nf )R global flavour symmetry. We have fermion44

and scalar fields, as listed in Tab.1 The corresponding Lagrangian consists of45

a gauge sector with field strength tensor Fµν , the coupling to the fermions via46

the covariant derivative Dµ, the gauge fixing Lgf and ghost Lgh terms. The47

scalar and gauge sector interactions is mediated via the real chiral Yukawa48

couplings yi. In the scalar sector, we have single-trace (u) and double-trace49

quartic couplings (v) and additional dimension-4 operators ∂L4. Traces in50

the Lagrangian run over both flavour and gauge indices.51

L = −1

4
FAµνFA

µν + Lgf + Lgh + Tr[ψ̄iD̂ψ] + Tr[∂µH†∂µH]−m2Tr[H†H]

− y1(Tr[ψ̄LHψR] + h.c.)− y2(Tr[ψ̄LH
†ψR] + h.c.)

− y3(Tr[ψ̄LψR] Tr[H] + h.c.)− y4(Tr[ψ̄LψR] Tr[H
†] + h.c.)

− uTr[(H†H)2]− v(Tr[H†H])2 − ∂L4, (4)
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52

δL4 = −s1 [Tr(HHHH) + h.c.]− s2
[
Tr(HHH†H†)

]
− s3

[
Tr(HHHH†) + h.c.

]
= −κ⃗(4)single · O⃗

(4). (5)
53

δL4 = −d1
[
Tr(HH) Tr(H†H†)

]
− d2 [Tr(HH) Tr(HH) + h.c.]

− d3
[
Tr(HH) Tr(HH†) + h.c.

]
− d4 [Tr(HHH) Tr(H) + h.c.]

− d5
[
Tr(HHH) Tr(H†) + h.c.

]
− d6

[
Tr(HH†H) Tr(H) + h.c.

]
− d7

[
Tr(HH†H) Tr(H†) + h.c.

]
= −κ⃗(4)double · O⃗

(4). (6)
54

δL4 = t1[Tr(HH) Tr(H) Tr(H) + h.c.] + t2[Tr(HH) Tr(H) Tr(H†) + h.c.]

+ t3[Tr(HH) Tr(H†) Tr(H†) + h.c.] + t4[Tr(H
†H) Tr(H) Tr(H) + h.c.]

+ t5[Tr(H
†H) Tr(H) Tr(H†) + h.c.] = −κ⃗(4)triple · O⃗

(4). (7)
55

δL4 = q1[Tr(H) Tr(H) Tr(H) Tr(H) + h.c.] + q2[Tr(H) Tr(H) Tr(H) Tr(H†) + h.c.]

+ q3[Tr(H) Tr(H) Tr(H†) Tr(H†) + h.c.] = −κ⃗(4)quadruple · O⃗
(4). (8)

In this work, we are interested in the planar (Veneziano) limit, where field56

multiplicities Nf and Nc are large and interactions are parametrically weak57

[9–13]. The advantage of the Veniziano limit is that it offers perturbative58

control, allowing expansions in a small parameter.59

The model has 23 dimensionless couplings: gauge coupling g, the Yukawas60

y1, y21 and quartic scalar couplings u, v, si, di, ti, qi. One usually introduces61

a set of rescaled couplings62

αg =
g2Nc

(4π)2
, αyi =

y2iNc

(4π)2
, αu =

uNf

(4π)2
, αv =

vN2
f

(4π)2
. (9)

63

αsi =
siNf

(4π)2
, αdi =

diN
2
f

(4π)2
, αti =

tiN
3
f

(4π)2
, αqi =

qiN
4
f

(4π)2
. (10)

This allows one to absorb all corrections with positive powers of Nc and64

Nf appearing in the β-functions for κ⃗ into the rescaled couplings given in65

Eqs. (9) and (10).66

Moreover, the parameter ϵ becomes continuous in this limit, taking values67

in the entire range ϵ ∈ [−11
2
,∞). We are particularly interested in the regime68

|ϵ| ≪ 1, where we can control perturbativity.69

A key feature of non-abelian gauge theories coupled to matter is that fixed70

point couplings α∗
i can be expanded as a power series in the small parameter71

ϵ. In our case, this means the “conformal expansion” of ϵ. The expansion72

1We absorb y3,4 in redefinition of fields
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coefficients α(n)
i are determined using perturbation theory, by performing a73

perturbative loop expansion up to order n+ 1 in the gauge and up to order74

n in the Yukawa and quartic β-functions [4, 9–11]:75

α∗
x = aLOϵ+ aNLOϵ

2 + aNNLOϵ
3 +O(ϵ4). (11)

It should be noted that generic β-functions have been calculated using76

RGBeta [14].77

Discussion78

In Veneziano limit, one computes at 2(gauge) − 1(Yukawa) − 1(scalar)79

order80

α∗
g =

26

57
ϵ, α∗

y1,2
=

4

19
ϵ, α∗

u =
1

19

(√
23− 1

)
ϵ, (12)

α∗
v = − 1

19

(√
20 + 6

√
23− 2

√
23

)
ϵ, α∗

si,di,ti,qi
= 0 (13)

Given α∗ = α∗(ϵ), one computes one IR-relevant eigendirection81

θg = −104ϵ2

171
+

33544ϵ3

9747
, θy1 =

6748ϵ2

1083
+

26ϵ

19
, θy2 =

4ϵ2

19
+

4ϵ

19
, (14)

θu =
8

19

√
2
(
10 + 3

√
23
)
ϵ, θv =

16
√
23ϵ

19
, (15)

θs1,d1,d2,d4,d5,t1,t2,t3,q1,q2,q3 =
16ϵ

19
, θs2,s3,d6,d7 =

8

19

(
1 +

√
23
)
ϵ, (16)

θd3,t4,t5 =
4

19

(
2 +

√
2
(
10 + 3

√
23
))

ϵ. (17)

Therefore, we 1. calculated all β-functions for gauge, Yukawa, scalar82

fields; 2. found fixed points and scaling exponents. More details on the83

calculations can be found in a forthcoming work [15].84
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