Particular notes in Black Hole shadow’s modelling
when spinning is taken into account
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Ob6cy2xmarorcss OCODEHHOCTH  YJIydIlleHHOTo aJjroputma Hplomena-funca wu
€ro TpUMeEHEHWe [ TOJyYeHWs METPUK UYEepPHBIX JbIPp B PACIIUPEHHBIX
Teopusix rpaBurtaruu. Paccmorpenbr Teopun pactmupsitor OTO  pasmuaabiMu
criocobaMu: TeTeBasi KBaHToBast rpasuTanust u f((Q)) rpasuTanust (CHMMeTPUYHAST

restenapasuiesnbaas rpasuras STEGR).

We discuss specific aspects of the improved Newman-Janis algorithm and its
application to generate rotating black hole metrics in the extended theories of
gravity. We consider here different theories extending general relativity in vari-
ous ways: loop quantum gravity and f(Q) gravity (symmetric teleparallel gravity
STEGR).

PACS: 44.25.+f; 44.90.4-¢

Introduction

Since the pioneering works on black hole shadows [1] it has been realized
that accounting of the tidal charge in the Reissner-Nordstrom metric may
allow to measure the contribution of new physics extending the general rel-
ativity (GR) [2]. To proceed, one must apply the new observational black
hole images. So, comparing the results of shadow modeling in various grav-
ity models one could find the model describing the shadow, accretion disk,
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... better than the others. At the first stage only the spherically-symmetric
solutions were used. However, both black holes photographed by the Event
Horizon Telescope (EHT) (M87 and Sgr A) rotate [3,4] (the angular veloc-
ity was measured quite recently [5]). Therefore, to increase the accuracy
it is highly desirable to take into account the effects of rotation. That is
why one has to make a transition from Reissner-Nordstrom-type metrics to
Kerr-Newman-type ones. In general the direct solving Einstein’s equations
for axially symmetric spacetime leads to complex implicit partial differential
equations. Thus, it is preferable to find alternative methods. For example
one can generate new solutions by introducing rotation in the parametric
space. Therefore, making such a turn from the case a = 0, where a is the ro-
tational parameter of a black hole, to a # 0, the Newman-Janis algorithm 6]
allows for obtaining rotating solutions in a simpler way. The algorithm was
later refined to facilitate this transformation in a simpler way [7]. This is
important for studying BH shadows in extended theories of gravity (for ex-
ample, Horndeski, bumblebee) [8], where rotation significantly influences the
shape of the shadow.

Rotating solutions

Previously, the Newman-Janis algorithm [6] in its improved version |7] has
been used in [9,10]. Thus, the process begins by considering the spherically
symmetric metric in the form:
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ds®> = —G(r)dt* + )
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where G(r), F(r) and H(r) are the metric functions. Such a representation
makes possible the application of the wide class of spherically symmetric
space-times. The components of the axially symmetric metric obtained from
equation (1) in [7] are:
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where K = H(r)\/F(r)/G(r).
In the next step, one introduce the function W(r, y?, a)(y = cos §) satisfy-
ing the conditions:

iiir(l) U(r,y* a) = H(r), (3)
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The first line in eq. (3) describes the behavior at a — 0, being the reverse
transition to the non-rotating metric with two representations (¥, and W,)
connected by the conformal transformation. So the initial metric is: ds? =
U./W,ds? and thus, one finds the solution of eq. (3) in the form:

U, = H(r)exp[a®f(r,a’y*, )] = H(r) + X (y*, 1) + o(a®),  (4)
H2(8K — K2)y?
K?(8H — H,K,)

X(y*r) =

f(Q) gravity

We consider the Symmetric Teleparallel Equivalent of General Relativity
(STEGR) with a non-zero non-metricity scalar @ [11]. The metric extending
GR (I") has the form [11,12]:
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where « is the expansion parameter, ¢; is the integration constant, M,.,, is
the re-normalized mass. Note that a far observer cannot detect the difference
between re-normalized and ordinary Schwarzschild masses. So we use M,..,, =
M everywhere, normalizing all values to it. In [13| the restrictions on «
(—0.008 < a < 0.005) were obtained at M = 1. Therefore, we assume that
la] < M. Also note that in our case r > 2M (event horizon in GR). We
begin the calculations with \/F/G:

F_l—W%+04§—§+af—§_l+ (e o1 ©)
G 1 2Men g 632 T2 My +32a

So K = r? and K, = 2r. The metric in such approximation is symmetric
if F = G with the last term 96a/r?. In this case X (y%,r) = y* = cos?0
and ¥ = 72 + a?cos?f. As a result, we denote A2 = —2Mr + 96c, p? =
r? + a? cos? § obtaining:
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Loop Quantum Gravity

We consider the modified Hayward metric without central singularity
[12,14] where:
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where the parameter [ measures the central energy density with 3/872, « is
the time delay between the center and infinity, and S is associated with single-
loop quantum corrections to the Newtonian potential. In [14] the parameters
were constrained as follows: 0 < o < 1, Bae = 41/(107) =~ 1.305. For | >
/16/27M =~ 0.7698 M the object has no horizon. In [12] it was shown that
these values fall under restrictions from EHT data. Therefore, the additional
parameters in this model cannot be small relative to M. Next:
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From this expression one concludes that it cannot be equal to 1. Therefore:
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Further X (p* = r? + a*cos?6): X = y?/A = cos’0/A. ¥ = r? +
a®cos®0/A. Let B =1r?A+a*cos?f and C' = 2Mr*(r® +2MI?)~! so the new
components are:

- C ) r’(A-1)+C
gtt:_pAB ) gw,:CLSlIlZQ ( AB) )
B B B
999 - A’ gT?” - A(T’Q + a2 o O)?
B 2(2A - 1)+ C + a®cos® 0
g¢¢zzsizﬁ(1+a2sin2¢9r( );2 a7 cos ) (11)
In opposite when a = 0, the following static metric is realized:
1 :
ge==G,  gs=0,  Gw=1"  Gr=1  Gep=r"sin’0. (12)

Therefore, here even at U # r? 4 a? cos? f the exact transition leads to the
original static metric at a = 0.

Conclusion

We discuss the specifics of the improved Newman-Janis algorithm and
show how to apply it to obtain rotating solutions for f(Q) gravity and loop
quantum gravity. For f(Q) gravity the rotating metric transits to the sym-
metric one at a = 0 (although initially the metric was not such). In contrast,
for loop quantum gravity the rotating metric at a = 0 turns into the original
asymmetric one.
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