
1

QUALITY RANDOM NUMBER GENERATOR

Maria Dimaa,* Mihai-Tiberiu Dimaa, Svetlana Dimaa, Madalina Mihailescub

aDzhelepov Laboratory of Nuclear Problems, JINR, RU-141980, Dubna, Russia,

e-mail: mmdima@jinr.ru

bHyperion University, Calea Calarasi 169, RO-030615. Bucharest, Romania

Abstract – Numerous applications in physics and technology rely on random number generation: for Monte

Carlo purposes, key distribution, and other tasks. For these elaborate hash functions with carefully studied and
tuned algorithms have been developed, giving pseudo-random numbers. Depending on the complexity and

quality of their output, they vary from very good quality (such as RANLUX with a 10171 repetition period), to

fast algorithms, however of lesser period (such as the Mersenne Twister, a factor of ca. 40 faster). We here

present the implementation of a true-random number “multiplier” algorithm. The algorithm relies on a finite set

of true-random numbers from a physical source (in our case 0.2M atmospheric noise random numbers in the

range of 0 ... 9999). The algorithm produces new numbers by combining pairs of 2 random numbers from the

list, situated at random distance apart. The random offset is calculated by a shift register structure involving both

the local rand() generator, and numbers from the list itself, whereby it produces "non-repetitive repetitions" - i.e.

our multiplier has no known period. The tests, performed with the DieHarder [1] test suite, show good quality.

INTRODUCTION

In performing Monte Carlo

simulations in physics [2, 3, 4] it is

imperative to assure the good quality of the

random numbers generated. Likewise,

cryptography [5] depends crucially on what

has come to be known as the “One Time

Pad” [6] principle, requiring also true-

random quality. Hash function based

generators have a set of problems [7, 8],

ranging from leak of distribution uniformity,

neighbor correlation and seed states not

having the same period, to problems with

dimensional distribution. For example, in

Fig.1 it’s shown how the rand() from GCC (which is esentially a hash function) is having

biases while generating random numbers - the errors for a helix fit on generated points.

Similarly, sets of ISAJET-7.0 SUSY events [14] needed to be discarded due to like biases in

their generation. Some of the most popular methods for random and pseudo-random number

generators are: LCGs, Mersenne Twister and CSPRNGs and TRNGs.

Linear Congruential Generators (LCGs) are simple pseudo-random algorithms using

a linear recurrence relation: 𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) mod 𝑚 .They are fast, memory-efficient, and

Figure 1 – helix fit errors [13] on generated points with Monte
Carlo modelled measurement errors. Statistical error is in blue

and the systematic error in red, magnified x10.

mailto:mmdima@jinr.ru

2

reproducible with a known seed, making them popular in simulations and basic applications.

However, their periodicity and predictability (due to structured output patterns) render them

unsuitable for cryptography. LCGs are historically significant, used in early programming

languages like C and Java. Mersenne Twister is a pseudo-random algorithm, based on a

twisted generalized feedback shift register, it boasts an extremely long period (219937 −

1)and high-dimensional equidistribution. It balances speed and statistical quality, making it a

standard in Python, R, and gaming engines for simulations and Monte Carlo methods. While

not cryptographically secure, its robustness against most biases ensures reliability in non-

security contexts like procedural generation or randomized algorithms. Cryptographically

Secure PRNGs (CSPRNGs), such as AES-CTR or algorithms like Fortuna, combine pseudo-

random techniques with cryptographic primitives to produce unpredictable outputs resistant

to reverse-engineering. They often seed from TRNGs and use hashing or block ciphers to

ensure security. Though computationally heavier, they are essential for encryption, token

generation, and secure communications. Examples include Linux’s /dev/urandom and

libraries like OpenSSL. True Random Number Generators (TRNGs) generate numbers

from physical phenomena like electronic noise, radioactive decay, or quantum effects,

ensuring true randomness. These methods are non-deterministic, offering high

unpredictability, making them ideal for cryptography and security applications. TRNGs are

valued in scenarios where absolute randomness is critical, such as encryption keys or

scientific simulations (e.g. Monte Carlo).

We here present a portable random generator that uses a set of 0.2M true-random

numbers, from atmospheric noise [9]. Due to the volume limitation of this set, we devised a

method to enhance its volume to 20000M, which we term “multiplier”, that preserves the

true-random quality of the set. We tested our algorithm with the DieHarder test suite (official

test suite of the Swiss Federal Office for Metrology - METAS [10]) and compared it to the

performance of the gcc rand() server.

Do note here that our “multiplier” is

dissimilar to Intel’s RdRand [11] server, which

is a pseudo-random generator (AES-CTR-

DRBG [12]) seeded at approximately 1 M/s

from an on-chip IP-core entropy source.

Our method combines random pairs found

at random distance apart, and does not use a

hash function. Aside this, we do not rely on

chip-dependent entropy sources, which vary (or

are absent) depending on the manufacturer.

Figure 2 – distribution of random numbers generated
by summing (black) or multiplying (blue) pairs of 2

numbers from the true-random set.

3

NEW METHOD USING ATMOSPHERIC NOISE

To address these shortcomings, we turned to a true-random source, from random.org

[9], namely atmospheric noise. We downloaded sets of 10000 numbers, up to a total of 200k

numbers, in the range of [0 … 9999]. This is however a very limited number and repetitions

occur often. To enhance our source-volume, we combined true-random numbers from the list.

This is, however, not that simple. While retaining “local” randomness, trivial combinations,

such as sum and product (figure 2), distort the phase space and thereby affect the density.

A more fitting approach is to combine the digits of the two true-randoms in an order

supplied by gcc’s rand(). After this step we norm the distribution to [0 … 1]. This approach

gives us access to all 𝐶𝑛
2 = 2 ∙ 1010 combinations, thereby solving the volume problem.

However, obtaining pairs from the list with a uniform long- and short-range coverage

remains still unaddressed. For this we use a shift register structure of offsets. The first offset

is generated by rand(); at the next serve it is passed onto the second offset, which is passed to

the third, … up to 10th. Each offset is divided by a prime number, of different size, such that

the sum of the modulo’s of all offsets to their respective prime numbers covers uniformly the

list in both long- and short-range. The last offset that remains empty is filled again by rand().

Additionally we add to the offset the current value of the random number in the box. The

offset is typically beyond the list’s end, so thus we wrap around to the beginning (the number

of times that it is needed). This is an elaborate method of using rand() to indicate access to

any number in the list on a uniform long- and short-range scale.

It is important to note here that we need neither seeding, nor initialisation of our

algorithm. We also could simply have taken system-time instead of rand() – which is an idea

for further development, to make the server even faster (current throughput is 0.15 Gbps,

significantly below Intel’s 3.00 Gbps server, however better than some of the established

servers – most, if not all, replaceable by Intel RdRand [11] in both speed and randomness

quality).

TESTS OF OUR METHOD

As aforementioned we used the DieHarder test suite for testing our algorithm. (For

future studies we could benchmark it with NIST SP 800-22 also.) Figure 5-left shows that the

distribution is as expected, flat in the [0 … 1] interval. This remains true at all scales plotted,

the rms of the data following a free-scale model.

Figure 3 – Our method combines the digits of the 2 true-randoms with order given by gcc’s rand().

4

Another very important test, aside DieHarder is the Fourier distribution test. Any

hidden correlations that may exist show in the Fourier spectrum. You will note in figure 5-

right that there are no significant peaks (just random noise similar to radio-frequency noise

spectra).

The result of the Dieharder test-battery is shown in figure 6. The sole flag we get is one

of the bit tests. This is mostly irrelevant: the test is looking for correct binomial distributions

of bit patterns. For the volume of 1 M random numbers that we generated, it took samples

and performed the test, and on one occasion it had a higher fluctuation. This is normal even

for perfect random-number generation (see DieHarder manual [15]). We did not observe any

fundamental problem, such as gcc’s random server 3D test fail. This we rather expected, as

our source is a truly physical process and we do nothing more than to correctly manipulate

Figure 2 – the Distribution Test (left) and the Fourier Test (right) for our algorithm.

Figure 3 – Dieharder test output for our algorithm.

5

phase space without distortion.

Not appealing to any has function, and just relying on a true-random physical source,

sets our algorithm in the same class with other physical-source servers (for instanc in the

quantum-quality range, ID Quantique’s Quantis [16], a ca. 3000€ server). This indicates that

true-random servers are not quite in the same class as open-software.

CONCLUSION

We presented a non-hash function true-random server based on a physical source (atmospheric
noise). The limited source-volume problem we solved by combining pairs of random numbers in the

set. The even long- and short-range distribution of the pairs we solved with a displacement shift-

register structure. The algorithm passed distribution, Fourier and DieHarder battery tests very well. It

requires no initialization and offers a decent 0.15 Gbps throughput. It has a speed of approx.
180ns/number, compared with other true random number generators that (depending on their

implementation and hardware quality), can range between 100ns up to several μs, making our

software to be between the fastest generators. Our method is more applicable than standard PRNs
because in Monte Carlo simulations (for instance, not throwing away events that were generated
badly), quantum simulation, testing software (fuzz testing methods), cryptography.

REFERENCES

1. DieHarder test suite: https://github.com/GINARTeam/Diehard-statistical-test
2. M. Stipčević, C. K. Koç, True Random Number Generators, Open Problems in Mathematics and Computational

Science (2014): DOI:10.1007/978-3-319-10683-0_12
3. V. Mannalath, S. Mishra, A. Pathak, A Comprehensive Review of Quantum Random Number Generators: Concepts,

Classification and the Origin of Randomness, Quantum Information Processing, 22, Article number: 439 (2023)
4. M. Moeini, M. Akbari, M. Mirsadeghi, H. R. Naeij, N. Haghkish, A. Hayeri, M. Malekian, Quantum Random Number

Generator Based on LED, Journal of Applied Physics, Volume 135, Issue 8 (2024)

5. Priyanka, I. Hussain, A. Khalique, Random Number Generators and their Applications: A Review., (2019), 7. 1777-
1781.

6. L. Thomas, One-Time Pad,In book: Trends in Data Protection and Encryption Technologies, (2023) DOI:10.1007/978-
3-031-33386-6_1

7. P. L’Ecuyer, Random Number Generators and Empirical Tests, Monte Carlo and Quasi-Monte Carlo Methods 1996.
Lecture Notes in Statistics, vol 127. Springer, New York, NY (1998)

8. L. Pasqualini, M. Parton, Pseudo Random Number Generation: a Reinforcement Learning approach, Procedia
Computer Science, Volume 170, 2020, Pages 1122-1127, ISSN 1877-0509

9. Atmospheric Noise downloadable data: https://random.org
10. Swiss Federal Office for Metrology – METAS, Random Number Generation - Certification (passed Dieharder test):

https://www.idquantique.com/random-number-generation/certifications/
11. Intel’s RdRand server:

https://www.intel.com/content/www/us/en/partner/showcase/offering/a5b3b0000000zqrAAA/xip8001b-true-random-
number-generator-trng-ip-core.html

12. Y. KIM, S. C. SEO, Efficient Implementation of AES and CTR_DRBG on 8-Bit AVR-Based Sensor Nodes, IEEE
Access, vol. 9, pp. 30496-30510, (2021) DOI:10.1109/ACCESS.2021.3059623

13. M.O. Dima, M.T. Dima, M. Dima, M. Mihailescu, Flash-algorithm for helix fit, Nucleus-2024 conference, accepted
for publication in Journal of Modern Physics E, DOI:10.1142/S0218301324410064

14. M. Dima, J. Barron, A. Johnson, L. Hamilton, U. Nauenberg, M. Route, D. Staszak, M. Stolte, and T. Turner, Mass
determination method for the left and right selectron above production threshold, Phys. Rev. D, Vol. 65, Issue 7, p.
071701(R) (2002), DOI:10.1103/PhysRevD.65.071701

15. Dieharder manual - what is a 3D Sphere test & it can fail at one of RGB test even if it's perfect:
https://rurban.github.io/dieharder/manual/dieharder.pdf

16. ID Quantique random number generator: https://www.idquantique.com/random-number-generation/products/quantis-
random-number-generator/

https://github.com/GINARTeam/Diehard-statistical-test
https://random.org/
https://www.idquantique.com/random-number-generation/certifications/
https://www.intel.com/content/www/us/en/partner/showcase/offering/a5b3b0000000zqrAAA/xip8001b-true-random-number-generator-trng-ip-core.html
https://www.intel.com/content/www/us/en/partner/showcase/offering/a5b3b0000000zqrAAA/xip8001b-true-random-number-generator-trng-ip-core.html
https://rurban.github.io/dieharder/manual/dieharder.pdf
https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator/
https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator/

	INTRODUCTION
	new MEthod using atmospheric noise
	Conclusion
	REFERENCES

