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Abstract — Numerous applications in physics and technology rely on random number generation: for Monte
Carlo purposes, key distribution, and other tasks. For these elaborate hash functions with carefully studied and
tuned algorithms have been developed, giving pseudo-random numbers. Depending on the complexity and
quality of their output, they vary from very good quality (such as RANLUX with a 101" repetition period), to
fast algorithms, however of lesser period (such as the Mersenne Twister, a factor of ca. x40 faster). We here
present the implementation of a true-random number “multiplier” algorithm. The algorithm relies on a finite set
of true-random numbers from a physical source (in our case 0.2M atmospheric noise random numbers in the
range of 0 ... 9999). The algorithm produces new numbers by combining pairs of 2 random numbers from the
list, situated at random distance apart. The random offset is calculated by a shift register structure involving both
the local rand() generator, and numbers from the list itself, whereby it produces "non-repetitive repetitions" - i.e.
our multiplier has no known period. The tests, performed with the DieHarder [1] test suite, show good quality.

INTRODUCTION

In performing Monte  Carlo
simulations in physics [2, 3, 4] it is !
imperative to assure the good quality of the 20 |-
random numbers generated. Likewise, i
cryptography [5] depends crucially on what _
has come to be known as the “One Time "’ ' @
Pad” [6] principle, requiring also true- 5_ error x 10
random quality. Hash function based
generators have a set of problems [7, 8],
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dimensional distribution. For example, in

Fig.1 it’s shown how the rand() from GCC (which is esentially a hash function) is having
biases while generating random numbers - the errors for a helix fit on generated points.
Similarly, sets of ISAJET-7.0 SUSY events [14] needed to be discarded due to like biases in
their generation. Some of the most popular methods for random and pseudo-random number

generators are: LCGs, Mersenne Twister and CSPRNGs and TRNGs.

Linear Congruential Generators (LCGSs) are simple pseudo-random algorithms using
a linear recurrence relation: X,,,; = (aX,, + ¢) mod m .They are fast, memory-efficient, and
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reproducible with a known seed, making them popular in simulations and basic applications.
However, their periodicity and predictability (due to structured output patterns) render them
unsuitable for cryptography. LCGs are historically significant, used in early programming
languages like C and Java. Mersenne Twister is a pseudo-random algorithm, based on a
twisted generalized feedback shift register, it boasts an extremely long period (219937 —
1)and high-dimensional equidistribution. It balances speed and statistical quality, making it a
standard in Python, R, and gaming engines for simulations and Monte Carlo methods. While
not cryptographically secure, its robustness against most biases ensures reliability in non-
security contexts like procedural generation or randomized algorithms. Cryptographically
Secure PRNGs (CSPRNGS), such as AES-CTR or algorithms like Fortuna, combine pseudo-
random techniques with cryptographic primitives to produce unpredictable outputs resistant
to reverse-engineering. They often seed from TRNGs and use hashing or block ciphers to
ensure security. Though computationally heavier, they are essential for encryption, token
generation, and secure communications. Examples include Linux’s /dev/urandom and
libraries like OpenSSL. True Random Number Generators (TRNGs) generate numbers
from physical phenomena like electronic noise, radioactive decay, or quantum effects,
ensuring true randomness. These methods are non-deterministic, offering high
unpredictability, making them ideal for cryptography and security applications. TRNGs are
valued in scenarios where absolute randomness is critical, such as encryption keys or
scientific simulations (e.g. Monte Carlo).

We here present a portable random generator that uses a set of 0.2M true-random
numbers, from atmospheric noise [9]. Due to the volume limitation of this set, we devised a
method to enhance its volume to 20000M, which we term “multiplier”, that preserves the
true-random quality of the set. We tested our algorithm with the DieHarder test suite (official
test suite of the Swiss Federal Office for Metrology - METAS [10]) and compared it to the

performance of the gcc rand() server.

an . . .
ax [ Do note here that our “multiplier” is

e dissimilar to Intel’s RdRand [11] server, which
is a pseudo-random generator (AES-CTR-
DRBG [12]) seeded at approximately 1 M/s
from an on-chip IP-core entropy source.
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Our method combines random pairs found
at random distance apart, and does not use a
hash function. Aside this, we do not rely on
2500 chip-dependent entropy sources, which vary (or
e ... %, | areabsent) depending on the manufacturer.
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Figure 2 — distribution of random numbers generated
by summing (black) or multiplying (blue) pairs of 2
numbers from the true-random set.
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Figure 3 — Our method combines the digits of the 2 true-randoms with order given by gec’s rand().

To address these shortcomings, we turned to a true-random source, from random.org
[9], namely atmospheric noise. We downloaded sets of 10000 numbers, up to a total of 200k
numbers, in the range of [0 ... 9999]. This is however a very limited number and repetitions
occur often. To enhance our source-volume, we combined true-random numbers from the list.
This is, however, not that simple. While retaining “local” randomness, trivial combinations,
such as sum and product (figure 2), distort the phase space and thereby affect the density.

A more fitting approach is to combine the digits of the two true-randoms in an order
supplied by gcc’s rand(). After this step we norm the distribution to [0 ... 1]. This approach
gives us access to all ¢z = 2 - 101° combinations, thereby solving the volume problem.

However, obtaining pairs from the list with a uniform long- and short-range coverage
remains still unaddressed. For this we use a shift register structure of offsets. The first offset
is generated by rand(); at the next serve it is passed onto the second offset, which is passed to
the third, ... up to 101, Each offset is divided by a prime number, of different size, such that
the sum of the modulo’s of all offsets to their respective prime numbers covers uniformly the
list in both long- and short-range. The last offset that remains empty is filled again by rand().
Additionally we add to the offset the current value of the random number in the box. The
offset is typically beyond the list’s end, so thus we wrap around to the beginning (the number
of times that it is needed). This is an elaborate method of using rand() to indicate access to
any number in the list on a uniform long- and short-range scale.

It is important to note here that we need neither seeding, nor initialisation of our
algorithm. We also could simply have taken system-time instead of rand() — which is an idea
for further development, to make the server even faster (current throughput is 0.15 Gbps,
significantly below Intel’s 3.00 Gbps server, however better than some of the established
servers — most, if not all, replaceable by Intel RdRand [11] in both speed and randomness

quality).
TESTS OF OUR METHOD

As aforementioned we used the DieHarder test suite for testing our algorithm. (For
future studies we could benchmark it with NIST SP 800-22 also.) Figure 5-left shows that the
distribution is as expected, flat in the [0 ... 1] interval. This remains true at all scales plotted,
the rms of the data following a free-scale model.



Another very important test, aside DieHarder is the Fourier distribution test. Any
hidden correlations that may exist show in the Fourier spectrum. You will note in figure 5-
right that there are no significant peaks (just random noise similar to radio-frequency noise
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Figure 2 — the Distribution Test (left) and the Fourier Test (right) for our algorithm.

spectra).

The result of the Dieharder test-battery is shown in figure 6. The sole flag we get is one
of the bit tests. This is mostly irrelevant: the test is looking for correct binomial distributions
of bit patterns. For the volume of 1 M random numbers that we generated, it took samples
and performed the test, and on one occasion it had a higher fluctuation. This is normal even
for perfect random-number generation (see DieHarder manual [15]). We did not observe any
fundamental problem, such as gcc’s random server 3D test fail. This we rather expected, as
our source is a truly physical process and we do nothing more than to correctly manipulate

1xplus966.cern.ch> ../bin/dieharder -a -f ../../CRE/testdata

# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
rng_name | filename | rands/second|
mt19937| ./../CRE/testdata| 8.12e+07 |
test_name Intup| tsamples |psamples| p-value |Assessment
diehard_birthdays o] 100 100|0.47181530 PASSED rgb_bitdist 7 100000 100|0.97148079 PASSED
iehard_operms [ 1000000 100/0.63716258| PASSED rgb_bitdist 8 100000 100(0.79793674| PASSED
diehard_rank_32x32 o 40000 100|0.81584421 PASSED rgb_bitdist 9 100000 100]0.53882510 PASSED
diehard_rank_6x8 ) 100000 100/0.39111459 PASSED rgb, tdist 10 100000 100/0.24582606 PASSED
diehard_bitstream [ 2097152 100|0.63524574| PASSED r tdist| 11 100000 100(0. 75 WEAK
diehard_opso o] 2097152 100|0.34153945 PASSED rgb_bitdist b I 00 100(0.93418366 PASSED
diehard_oqgso [ 2097152 100|0.45587216 PASSED rgb_minimum_e distance 2 10000 1000|0.25853534 PASSED
diehard_dna o 2097152 100]0.23615864 PASSED rgb_minimum_distance 3 10000 1000|0.48502776 PASSED
diehard_count_ls_str (4] 256000 100|0.26028113 PASSED rgb_minimum_distance 4 10000 1000|0.44251535 PASSED
diehard_count_ls_byt [ 256000 100|0.95572756| PASSED rgb_minimum_distance 5 10000 1000|0.01768079| PASSED
diehard_parking_lot o 12000 100|0.81126942 PASSED rgb_permutations 2 100000 100(0.74192863 PASSED
diehard_2dsphere 2 000 100|0.32449655 PASSED rgb_permutations 3 100000 100|0.50817925 PASSED
diehard_3dsphere 3 000 100[0.96373284 PASSED rgb_permutations 4 100000 100|0.62637257 PASSED
diehard_squeeze o 100000 100[0.53470947 PASSED rgb_permutations 5 100000 100|0.08799434 PASSED
diehard_sums [ 100 100|0.15053501 PASSED rgb_lagged_sum o 1000000 100|0.70389634 PASSED
diehard_runs o 100000 100]0.52663263 PASSED rgb_lagged_sum b & 1000000 100/0.01955094 PASSED
diehard_runs o] 100000 100|0.77527565 PASSED rgb_lagged_sum 2 1000000 100|0.10887362 PASSED
diehard_craps [} 200000 100|0.83664949 PASSED rgb_lagged_sum 3 1000000 100|0.85865068 PASSED
diehard_craps o 200000 100|0.18167552 PASSED rgb_lagged_sum 4 1000000 100|0.94969894 PASSED
marsaglia_tsang_gcd 0o 10000000 100|0.46266401 PASSED rgb_lagged_sum 5 1000000 100|0.44685250 PASSED
marsaglia_tsang_gcd o] 10000000 100|0.64923462 PASSED rgb_lagged_sum 6 1000000 100(/0.46350022 PASSED
sts_monobit 5 100000 100|0.35632948 PASSED rgb_lagged_sum 7 1000000 100|0.41978923 PASSED
s_run 2 100000 100|0.37028540 PASSED rgb_lagged_sum 8 1000000 100/ 0.04664686 PASSED
sts_seria 1 100000 100|0.63727105 PASSED rgb_lagged_sum 9 1000000 100|0.89772092 PASSED
sts_seria 2 100000 100|0.08055766 PASSED rgb_lagged_sum 10 1000000 100|0.96008326 PASSED
sts_seria 3 100000 100|0.07898246 PASSED rgb_lagged_sum 11 1000000 100|0.51775186 PASSED
sts_seria 3 100000 100|0.65872584 PASSED rgb_lagged_sum 12 1000000 100|0.26816445 PASSED
sts_seria 4 100000 100|0.72926558 PASSED rgb_lagged_sum 13 1000000 100|0.50377398 PASSED
sts_seria 4 100000 100|0.31772718| PASSED rgb_lagged_sum| 14 1000000 100(0.76303261| PASSED
sts_seria 5 100000 100|0.85099581 PASSED rgb_lagged_sum 15 1000000 100(0.89484150 PASSED
sts_seria S 100000 100/0.40619350 PASSED rgb_lagged_sum 16 1000000 100|0.84984305 PASSED
sts_seria 6 100000 100[0.60682451 PASSED rgb_lagged_sum 17 1000000 100|0.48336272 PASSED
sts_seria 6 100000 100|0.91254456 PASSED rgb_lagged_sum 18 1000000 100|0.33904465 PASSED
sts_seria 7 100000 100|0.28014881 PASSED rgb_lagged_sum 19 1000000 100|0.91450136 PASSED
sts_seria 7 100000 100/0.83888457 PASSED rgb_lagged_sum 20 1000000 100/0.33517198 PASSED
sts_seria 8 100000 100|0.64935726 PASSED rgb_lagged_sum 21 1000000 100|0.60886593 PASSED
sts_seria 8 100000 100(0.78462688 PASSED rgb_lagged_sum 22 1000000 100|0.21431452 PASSED
sts_seria 9 100000 100|0.33559654 PASSED rgb_lagged_sum 23 1000000 100|0.89306084 PASSED
sts_seria 9 100000 100|0.59274403 PASSED rgb_lagged_sum 24 1000000 100|0.37696776 PASSED
sts_seria 10 100000 100|0.82484527| PASSED rgb_lagged_sum| 25 1000000 100|0.72156370| PASSED
sts_seria 10 100000 100|0.98867799 PASSED rgb_lagged_sum 26 1000000 100(0.61033227 PASSED
sts_seria 1 100000 100(0.12997413 PASSED rgb_lagged_sum 27 1000000 100(0.12937938 PASSED
sts_seria 1% 100000 100|0.98976550| PASSED rgb_lagged_sum| 28 1000000 100/0.11848106| PASSED
sts_seria 12 100000 100|0.74446333 PASSED rgb_lagged_sum 29 1000000 100(0.97287148 PASSED
sts_seria 12 100000 100/0.52791915| PASSED rgb_lagged_sum| 30 1000000 100|0.89253519| PASSED
sts_seria 13 100000 100]0.60595764 PASSED rgb_lagged_sum 31 1000000 100(0.15373878 PASSED
sts_seria 13 100000 100|0.53271433 PASSED rgb_lagged_sum 32 1000000 100|0.50673415 PASSED
sts_seria 14 100000 100|0.35748087| PASSED rgb_kstest_test [ 10000 1000|0.33288306| PASSED
sts_seria 14 100000 100/0.15146755 PASSED dab_bytedistrib o 51200000 1/0.90130782 PASSED
sts_seria 15 100000 100|0.82067415 PASSED dab_dct| 256 50000 1/0.44296581 PASSED
sts_seria 15 100000 100]0.29912912 PASSED FreparTng to run test 207. ntuple = 0
sts_seria 16 100000 100[0.48485880 PASSED b_filltree| 32| 15000000| 1/0.26841997| PASSED 4
sts_seria 16 100000 100|0.10235804| PASSED dab_filltree| 32| 15000000| 1/0.66500513| PASSED
rgb_bitdist 1 100000 100/0.93095677| PASSED Preparing to run test 208. ntuple =
rgb_bitdist 2 100000 100|0.86550980 PASSED dab_filltree2| (o3} sooooool 1|0.79850974| PASSED
rgb_bitdist 3 100000 100[0.79340458 PASSED dab_filltree2| 1| 5000000 | 1/0.59578731| PASSED
rgb_bitdist 4 100000 100|0.18513802 PASSED Prepamng to run test 209. ntuple = 0O
rgb_bitdist 5 100000 100|0.52794552 PASSED dab_monobit2| 12| 65000000 | 1/0.68785522| PASSED
rgb_bitdist 6 100000 100/0.69202259 PASSED Txplus966.cern.ch> [l

Figure 3 — Dieharder test output for our algorithm.



phase space without distortion.

Not appealing to any has function, and just relying on a true-random physical source,
sets our algorithm in the same class with other physical-source servers (for instanc in the
quantum-quality range, ID Quantique’s Quantis [16], a ca. 3000€ server). This indicates that
true-random servers are not quite in the same class as open-software.

CONCLUSION

We presented a non-hash function true-random server based on a physical source (atmospheric
noise). The limited source-volume problem we solved by combining pairs of random numbers in the
set. The even long- and short-range distribution of the pairs we solved with a displacement shift-
register structure. The algorithm passed distribution, Fourier and DieHarder battery tests very well. It
requires no initialization and offers a decent 0.15 Gbps throughput. It has a speed of approx.
180ns/number, compared with other true random number generators that (depending on their
implementation and hardware quality), can range between 100ns up to several us, making our
software to be between the fastest generators. Our method is more applicable than standard PRNs
because in Monte Carlo simulations (for instance, not throwing away events that were generated
badly), quantum simulation, testing software (fuzz testing methods), cryptography.
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