Direct photon production in KaTie

A. Allakhverdieva DLNP JINR

Alusha, 2024

Quantum chromodynamics

 $L(x) = -\frac{1}{4}G^{a}_{\mu\nu}(x)G^{a}_{\mu\nu}(x) + \sum_{f} \bar{q}_{f}(x)(i\gamma^{\mu}D_{\mu} - m_{q})q_{f}(x),$

$G^{a}_{\mu\nu}(x) = \partial_{\mu}A^{a}_{\nu}(x) - \partial_{\nu}A^{a}_{\mu}(x) + g_{s}f^{abc}A^{b}_{\mu}(x)A^{c}_{\nu}(x).$

Spin Physics Detector

Electromagnetic calorimeter Magnet

Range system Vertex detector end-cap Zero degree calorimeter Range system end-cap Electromagnetic calorimeter end-cap Time-of-flight system end-cap Beam-beam counter Aerogel

Time-of-flight system

Straw tracker

Vertex detector

Beam pipe

Straw tracker end-cap

Direct photons

• Direct photons were predicted to exist by C.O. Escobar in 1975[Escobar, 1975].

Storage Rings at CERN in 1976 [Darriulat P. et al., 1976].

• First observation of direct photons was made by the R412 group at the Intersecting

Factorization of Hard Processes in QCD

Collinear parton model

 $d\sigma(p \ p \to k \ X) = \sum_{a,b} \int dx_1 f_a(x_1)$

$$(x_1, \mu^2) \int dx_2 f_b(x_2, \mu^2) d\hat{\sigma}(a+b \to k),$$

 $q^{\mu} = xP^{\mu}, \ q_T = 0, \ q^2 = 0.$

Parton distribution functions

 $\int_{0}^{1} (f_{u}(x) - f_{\bar{u}}(x))dx = 2;$

 $\int_{0}^{1} (f_{s}(x) - f_{\bar{s}}(x)) dx = 0;$

$$\int_{0}^{1} dx \ x(f_{u}(x) + f_{\bar{u}}(x) + f_{d}(x))$$

 $+f_{\bar{d}}(x) + f_{\bar{s}}(x) + f_{\bar{s}}(x) + f_{g}(x)) = 1.$

DGLAP evolution equations

$$\frac{d}{d\ln\mu^2} f_g(x,\mu^2) = \frac{\alpha_s(\mu^2)}{\pi} \int_x^1 \frac{dz}{z} \left\{ P_{g \leftarrow q}(z) \sum_f \left[f_q\left(\frac{x}{z},\mu^2\right) + f_{\bar{q}}\left(\frac{x}{z},\mu^2\right) \right] + P_{g \leftarrow g}(z) f_g\left(\frac{x}{z},\mu^2\right) \right\} + P_{g \leftarrow g}(z) f_g\left(\frac{x}{z},\mu^2\right) + P_{g \leftarrow g}$$

$$\frac{d}{d\ln\mu^2}f_q(x,\mu^2) = \frac{\alpha_s(\mu^2)}{\pi} \int_x^1 \frac{dz}{z} \left\{ P_{q\leftarrow q}(z)f_q\left(\frac{x}{z},\mu^2\right) + P_{q\leftarrow g}(z)f_g\left(\frac{x}{z},\mu^2\right) \right\},$$

$$\frac{d}{d\ln\mu^2} f_{\bar{q}}(x,\mu^2) = \frac{\alpha_s(\mu^2)}{\pi} \int_x^1 \frac{dz}{z} \left\{ P_{q \leftarrow q}(z) f_{\bar{q}}\left(\frac{x}{z},\mu^2\right) + P_{q \leftarrow g}(z) f_g\left(\frac{x}{z},\mu^2\right) \right\}.$$

$$\frac{\alpha_s(Q)}{\pi},$$

$q + \bar{q} \rightarrow g + \gamma$

Results Motivation

 $q + g \rightarrow q + \gamma$

Results CERN WA70

Comparison of predictions in CPM for direct photons differential cross section as function of photon transverse-momentum at $\sqrt{S} = 22.96 \, {
m GeV}$, $-0.05 < x_{F\gamma} < 0.05$. PDFs sets: a) MSTW2008lo, b) CT18LO, c) NNPDF2_3.

Обсуждение результатов CERN UA6

Comparison of predictions in CPM for direct photons differential cross section as function of photon transverse-momentum at $\sqrt{S} = 24.3 \; {
m GeV}, -0.2 < y_{\gamma} < 1.0$. PDFs sets: a) MSTW2008lo, b) CT18LO, c) NNPDF2_3.

Обсуждение результатов CERN NA24

Comparison of predictions in CPM for direct photons differential cross section as function of photon transverse-momentum at $\sqrt{S} = 23.75 \; {
m GeV}, -0.65 < y_{\gamma} < 0.52$. PDFs sets: a) MSTW2008lo, b) CT18LO, c) NNPDF2_3.

Обсуждение результатов CERN R110

Comparison of predictions in CPM for direct photons differential cross section as function of photon transverse-momentum at $\sqrt{S} = 63.0 \, {
m GeV}, -0.8 < y_{\gamma} < 0.8$. PDFs sets: a) MSTW2008lo, b) CT18LO, c) NNPDF2_3.

Results

$\bar{K} \pm \delta \bar{K}$			
ISTW2008	CT18LO	$NNPDF2_3$	
341 ± 1.054	8.513 ± 1.470	10.399 ± 1.195	
438 ± 0.011	3.163 ± 0.070	3.109 ± 0.024	
396 ± 0.623	3.031 ± 1.138	3.258 ± 0.959	
069 ± 0.182	3.759 ± 0.194	3.812 ± 0.234	
$.057 \pm 0.215$	$2.198 {\pm} 0.271$	$2.657 {\pm} 0.395$	
$.737 \pm 0.023$	$3.433 {\pm} 0.031$	$3.559{\pm}0.028$	

Results

$\bar{K} \pm \delta \bar{K}$			
/ISTW2008	CT18LO	NNPDF2_3	
777 ± 0.297	3.361 ± 0.380	5.266 ± 0.394	
834 ± 0.076	1.144 ± 0.006	1.419 ± 0.003	
883 ± 0.097	1.210 ± 0.372	1.509 ± 0.218	
162 ± 0.099	1.456 ± 0.086	1.821 ± 0.163	
$.184{\pm}0.159$	$1.321{\pm}0.184$	$1.787{\pm}0.313$	
$.003 \pm 0.083$	$1.315 {\pm} 0.014$	$1.709 {\pm} 0.034$	

Summary

it is necessary:

- take into account calculations in NLO;
- perform calculations on the factorization scale: $\mu = p_{T\gamma}$.

It follows that for better agree the experiment with the theoretical predictions

Thank you for your attention!