
Workload Management System for
 SPD Online filter

Nikita Greben, MLIT

AYSS Alushta-2024, 9-16 June 2024

SPD experiment at NICA collider

2

One of the strategically important infrastructure projects, from the point of view of the long–term scientific plan
of JINR, is the NICA complex for spin physics on polarized beams - the SPD detector (Spin Physics Detector).

➢ Polarized proton and deuteron beams
➢ Collision energy up to 27 GeV
➢ luminosity up to 1032 cm−2 s−1

➢ Bunch crossing every 80 ns = crossing rate
12.5 MHz

➢ Number of registration channels in SPD ~ 500000
➢ ~ 3 MHz event rate (at max luminosity) = pileups

○ ~ 20 GB/s (or 200PB/year) “raw” data
➢ Physics signal selection requires momentum and vertex

reconstruction
○ => no simple trigger is possible

Triggerless DAQ

3

Triggerless DAQ means that the output of the system is not a set of raw
events, but a set of signals from sub-detectors organized into time slices.

«triggerless» DAQ

➢ DAQ provide data organized in time frames which placed
in files with reasonable size (a few GB).

➢ Each of these file may be processed independently as a
part of top-level workflow chain.

➢ No needs to exchange of any information during handling
of each initial file, but results of may be used as input for
next step of processing.

High-throughput computing

➢ HTC is defined as a type of computing that simultaneously executes

numerous simple and computationally independent jobs to perform a

data processing task.

➢ Since each data element can be processed simultaneously, this can be

applied to data aggregated by a data acquisition system (DAQ).

➢ To ensure efficient utilization of computational resources, data

processing should be multi-stage:

○ One stage of processing → task

○ Processing a block of data (file) → job

4Task-job relationship

SPD Online Filter as a middleware software

❖ Data management system (one PhD student and one

master student)

➢ Data lifecycle support (data catalog, consistency

check, cleanup, storage);

❖ Workflow Management System (master student)

➢ Define and execute processing chains by generating

the required number of computational tasks;

❖ Workload management system:

➢ Create the required number of processing jobs to

perform the task;

➢ Control job execution through pilots working on

compute nodes;
5

«SPD OnLine filter» – hardware and software complex

providing multi-stage high-throughput processing and filtering

of data for SPD detector.

Architecture of SPD Online Filter

Workload management system requirements

❖ Task registration: formalized task description,

including job options and required metadata

registration.

❖ Jobs definition: generation of required number of

jobs to perform task by controlled loading of

available computing resources.

❖ Jobs execution management: continuous job state

monitoring by communication with pilot, job retries

in case of failures, job execution termination.

Forming jobs based on dataset contents, one file per one job

6

The key requirement - systems must meet the high-throughput paradigm.

❖ task-manager – implements both external and

internal REST APIs. Responsible for registering

tasks for processing, cancelling tasks, reporting on

current output files and tasks in the system.

❖ task-executor – responsible for forming jobs in the

system by dataset contents.

❖ job-manager – accountable for storing jobs and

files metadata, as well as providing a REST API for

the executed jobs.

❖ job-executor – responsible for distribution of jobs

to pilot applications, updating the status of jobs

❖ pilot – responsible for running jobs on compute

nodes, organizing their execution, and

communicating various information about their

progress and status.

Architecture and functionality of Workload Management System

SPD Workload Management System High Level Architecture 7

Current Status

Design of services:

➢ Implemented a mechanism for declaring the data model in the database based on ORM and migration
scripts;

➢ Designed and implemented a list of required REST API methods and their signatures;

➢ Configured CD tools (build and deployment) on the JINR LIT infrastructure;

➢ Designed inter-service interaction scenarios;

➢ Redesigned Pilot internal architecture;

Prototype of services:

➢ Run through all job execution state model, debugging interactions with the pilot;

➢ Most microservices partially implemented;

➢ Job management subsystem is the most advanced: most interactions implemented and being tested;

➢ Pilot is in active stage of development (Leonid Romanychev SPbSU).

8

Next major steps

9

● Task processing
○ Implementing task-partitioning algorithm.

○ Closing datasets for DSM.

○ Execute the entire workchain set up on the level of WfMS.
● Logging

○ Currently, each microservice's logs are mapped to the host via a shared file system between Docker and the host.
● Configuration

○ Consider to centralize some of the shared configurations across multiple services.
● Documentation

○ Given the increasing complexity of the internal logic of the software, it is necessary to document each step of the
development.

● Metrics and monitoring
○ For example, service query-per-second, API responsiveness, service latency etc.

Thank you for your attention!

10

11

Backup slides

Task and job definition

12

➢ A task is a workload unit responsible for processing a

block of homogeneous data - dataset.

➢ A processing request is a set of input data, which may

consist of multiple files, and a handler.

➢ The criterion for the completion of the task is the

processing of the entire block of data.

➢ The Workflow Management System is responsible for

defining and executing workflows, as well as defining a

processing request, which is a task.

➢ A job (payload) is a unit of work that processes a unit of

data (file).

➢ The unit responsible for processing a single file in terms of

workload is called a job.

➢ The Workload Management System is responsible for

generating jobs, sending them to compute nodes, and

executing them.

Task-job relationship

Dataflow and data processing concept

Main data streams:

❖ SPD DAQs, after dividing sensor signals into

time blocks, send data to the SPD Online

Filter input buffer as files of a consistent size.

❖ The workflow management system creates

and deletes intermediate and final data sets

❖ The workload management system

“populates” the data sets with information

about the resulting files

❖ At each stage of data processing, pilots will

read and write files to storage and create

secondary data

13

Internal design of Pilot Agent

14

➢ The agent application is deployed on a compute

node and consists of the following two

components: a UNIX daemon and the pilot itself.

➢ The UNIX daemon's objective is to run the next

pilot by downloading an up-to-date version from

the repository.

➢ Pilot itself is a multi-threaded Python application

responsible for

○ Receiving and validating jobs from the

message broker.

○ Downloading input files for the payload

stage and uploading the result files to the

output storage.

○ Launching a subprocess to execute a

payload (decoding DAQ format, track

recognition algorithm, etc.)

○ Keeping the upstream system informed of

the current status of the payload and the

pilot itself via heartbeat/status updates

during each phase of pilot execution.

➢ Compute nodes differ only in the availability of specialized co-processors

(GPUs) and are assigned to the appropriate message broker based on the

computational needs of the job.

➢ Regardless of the presence of an error, when the pilot finishes, the UNIX

daemon launches a new instance of the pilot.

Tech stack

15

Common
➢ Python 3.12
➢ docker compose - running

multi-container applications

Frameworks
➢ aio-pika (RabbitMQ + asyncio) -

asynchronous API with RabbitMQ
➢ FastAPI + uvicorn

DB
➢ PostgreSQL - RDBMS
➢ Alembic (Migration)
➢ SQLAlchemy 2.0
➢ asyncpg - Postgres DBAPI

Extra
➢ aiohttp - asynchronous HTTP

client/server framework
➢ Pydantic - validate and serialize data

schemes
➢ pytest-asyncio - test purposes

Interaction with the Data Management System

16

Within a Workload Management System, there are several scenarios

for interacting with the data management system:

➢ Obtain information about dataset contents for forming jobs from

DSM-Manager (Data Catalog REST API)

➢ Register files in datasets after executing payload on compute

node – DSM-Register (Data Registration)

➢ Close dataset after cancellation or sufficient number of

successfully processed files – DSM-Register
Architecture of Data Management

Routing Key Msg Algo

dataset.close Dataset info
• Dataset UID
• File check list (file

names)

Request the registered files in the dataset. If
they match the checklist, set the status to
CLOSED. Otherwise, return the messages
back to the queue for deferred execution.

dataset.upload Dataset UID Marking dataset for uploading
(TO_UPLOAD)

dataset.delete Dataset UID Marking dataset for deletion (TO_DELETE)

Signature and algorithm of message receiving gateways for the dsm-register service

Interaction with the Workflow Management System

17

➢ Registration of a task for processing

○ WfMS passes the task description into message

queue

➢ Summary of current intermediate properties of jobs/files

in the system

○ Aggregated information about the status of each

job/file for further decision making

➢ Task cancellation

○ Based on the decision made on the WfMS (too

many errors occuring) or operator side

➢ Change priority of a task

○ Control management

WMS

Interaction with the Pilot Agent

18

Two communication channels:

● HTTP (aiohttp)

● AMQP (message broker - RabbitMQ)

Two types of nodes:

● Multi-CPU

● Multi-CPU + GPU

❖ Pilot has a series of prepossessing stages before running a job itself:
a. start logging
b. read configuration
c. getting a job from message queue
d. validation

❖ After those steps the Pilot launches another thread where it does
a. environment setup script
b. copying files locally from the input storage
c. starts execution of a job itself in a separate sub-process
d. analysis of the result of a job
e. copying output data and logs to storage
f. sends regular messages to WMS

g. cleaning up the local environment
❖ Pilot sends status-update message at any point of internal changes
❖ WMS may terminate the job if the corresponding task is cancelled or if an

error occurs.

➢ A detailed job status model has been described
➢ Error codes introduced
➢ Pilot ran through all major stages of the job execution (DAG)
➢ Pilot at this stage runs a script that does a basic hash compute
➢ Further debugging needed

RDBMS - PostgreSQL 16

Tables:

❖ alembic_version – managing and tracking
database schema changes

❖ file_dat – a directory specifying the output files
and logs generated on the pilot

❖ job_dat – jobs currently being processed in the
system

❖ task_dat – current tasks in the system

Extra mechanisms:

❖ Indexes – on filter fields for optimization of
operations

❖ Procedures – task and job generation for test
purposes

❖ Triggers – rank update logic
❖ Decomposition – single database per

microservice

Database design

19

ER Diagram of the Workload
Management System Database

Following tools are used
❖ Poetry

➢ Particularly good at handling complex
dependency trees and ensuring that the different
modules can integrate with each other without
version conflicts

❖ Python packages
➢ Separate GitLab repositories for each package
➢ Poetry for packaging and dependency

management
❖ Gitlab

➢ Access Tokens used as kind of credentials for
scripts and other tools

➢ CI/CD for automate testing and building

Modularization: deploying and using own packages

20

wms-schema is a package that contains a scheme for task and job data that is used
in almost every other service

Prototyping Job-Manager (API)

21

● The chosen framework for building the service is FastAPI + Uvicorn asynchronous framework
● A basic set of CRUD operations on data in the form of REST API is developed.
● API description autogeneration according to OpenAPI 3.0 specification is implemented (available in Swagger UI at <server address>/docs)

Swagger UI with job-manager service API description Example of a service call to post a new job

Prototyping Job-Executor - Pilot (RabbitMQ queues)

22

● RabbitMQ is selected as the message broker
● Queues are defined using the declarative notation of the aio-pika tool
● At the start of the application their unfolding is performed

Jobs could be delivered manually
Configured RabbitMQ queues

R&D

23

● Jobs scheduling algorithm

● Partitioning of a task
○ Imagine a multitasking operating system.
○ Each dataset represents a process, and each record

within a dataset is like a thread within that process.
○ The algorithm acts as the operating system's

scheduler, allocating processing time to threads
based on their priority.

● Chunk size and rank/priority of a job as a basic control
unit:

Proposed task-partitioning algorithm

