

Effect of the DNA synthesis inhibitor AraC on DNA double-strand breaks formation in normal and tumor cells under proton irradiation

Shamina D.^{1,2}, Hramco T.^{1,2}, Krupnova M.¹, Pakhomova N.¹, Yasinskaya A², Boreyko A^{1,2}

JINR AYSS Conference "Alushta-2024"

¹ Joint Institute for Nuclear Research, Russia, Dubna

² Dubna State University, Russia, Dubna

γH2AX/53BP1 foci formation and elimination (DSB repair dynamics) in normal and tumor cells

A – proton irradiation (Bragg peak), B - ¹⁵N ions

Research goal

Visualization and analysis of DNA double-strand breaks (DSB) induced by protons and accelerated ¹⁵N ions in human fibroblasts and U87 glioblastoma cells under the action of AraC inhibitor

Materials and methods

Type of irradiatio n	Energy, MeV/n	LET, keV/µm	Angle	Dose, Gy	Radiation source
Protons	150	0.25	10°	1.25	Phasotron, DLNP
¹⁵ N ions	14	180	10°	1.25	U-400M, FLNR

Immunostaining method

Colony-forming unit method

Radiation-induced foci - the site of DSB formation

Kinetics of γH2AX/53BP1 foci formation and elimination in normal and tumor cells after proton irradiation

Survival of glioblastoma cells after exposure to protons

Survival of glioblastoma cells after exposure to protons

Kinetics of γH2AX/53BP1 foci formation and elimination in normal and tumor cells after nitrogen ions irradiation

Time after irradiation, h

Summary

- The number of foci per cell decreases with time after proton irradiation in both types of cell cultures
- The presence of the AraC inhibitor induces an increase of a persistent foci number till the 24 h: 6-fold higher growth in the fibroblasts and 3-fold higher in the glioblastoma cells compared to the number of foci in cells that were not preincubated with inhibitor
- Colony survival of glioblastoma cells in the presence of AraC upon proton irradiation is significantly reduced
- It was shown that upon irradiation with accelerated ¹⁵N ions, the kinetics of DNA DSB repair in fibroblasts is successfully carried out both under normal conditions and under the influence of the AraC inhibitor

thank you for your attention!

