Double J/ψ production in pion-nucleon scattering at COMPASS

Gridin Andrei (JINR, DLNP)

JINR Association of Young Scientists and Specialists Conference «Alushta-2024», 11.06.2024

Hadron structure

QCD is the theory of strong interaction between quarks and gluons, describes processes at $\alpha_S(Q^2) < 1$.

To desribe hadron interactions at high energies one can use factorization theorem: hard cross section of interaction of A and B hadrons could be written as a convolution of parton density functions (PDFs) with hard cross section of interaction of partons:

$$\sigma_{AB} \approx \sum_{a,b} \int dx_a \int dx_b f_a^A(x_a) f_b^B(x_b) \hat{\sigma}_{ab},$$

where $\hat{\sigma}_{ab}$ – hard cross section of interaction of a and b partons.

2

Intrinsic charm of a hadron

• The existence of non-perturbative (intrinsic) Fock component in a hadron with *c*-quarks is postulated:

 $|p\rangle \sim |uud> + |uudg> + |uudc\bar{c}\rangle + \dots$

- Intrinsic charm contribution is generated nonperturbatively via $gg \rightarrow Q\bar{Q}$.
- Beside of intrinsic charm $(gg \rightarrow Q\bar{Q})$ there is extrinsic charm component in hadrons that arises from gluon splitting $(g \rightarrow Q\bar{Q})$.
- Valence-like intrinsic charm quarks carry the most part of hadron momentum.
- LHCb and EMC data were included into parton distribution functions NNPDF4.0. The existence of $\frac{5}{2}$ intrinsic charm of proton is established at 3σ level. NNPDF collaboration Nature 608 (2022) 7923, 483-487

BHPS model: S.J. Brodsky et al, Phys. Lett. B 93, 451 (1980) Phys.Rev.D 23 (1981) 2745

J/ψ pair events at NA3

Kinematical prop	Kinematical properties of the 13 $\psi\psi$ events observed in our experiment. P_z is given in the laboratory frame,						
Phys Lett B, v114, No6 (1982):	$P_{x_1}^{\psi}$	$P_{y_1}^{\psi}$	$P_{z_1}^{\psi}$	$P_{x_2}^{\psi}$	$P_{y_2}^{\psi}$	$P_{z_2}^{\psi}$	M_{ψ_1}
(-150, 0, 11) $(-1, 0, 1)$	0.90	-1.52	80.15	-0.398	1.67	44.89	7.39
$\sigma_{2,\mu}(\pi = 150)$ (ieV/c) = 18 ± 8 pb/nucleon	-1.41	-0.98	46.52	2.31	0.21	107.04	7.84
$\sim 2J/\psi$ ($\sim - \sim P$) $\sim - \sim P$)	-0.34	-0.48	43.49	1.01	1.79	105.96	7.18
(-200 - 11) 20 + 10 1/ 1	-0.55	-0.13	138.55	1.16	0.55	75.81	6.83
$\sigma_{2 Ibv}(\pi \ 280 \ GeV/c) = 30 \pm 10 \ pb/nucleon$	1.37	0.58	41.38	-0.87	-0.91	151.79	8.31
$2J/\psi$	0.46	0.87	99.72	0.22	-0.49	36.14	7.14
	-1.27	1.20	78.14	0.09	-0.95	63.28	6.71
Phys I off R v158 No1 (1085). -150 Cov	2.96	1.14	69.16	1.70	1.00		0.40
1 Hys Lett D, 130, 1401 (1905). * 150 Gev/c	2.80	~1.14	58.15	-1.72	1.93	77.19	8.43
	0.13	0.36	28.17	-1.09	0.54	87.73	7.28
	1.59	1.11	48.59	-1.14	-1.19	53.73	7.17
$\sigma_{2,\mu}(p 400 (ieV/c) = 2/\pm 10)$ pb/nucleon	1.33	0.54	39.50	-0.61	0.18	78.89	6.99
$2J/\psi$ P $2000000000000000000000000000000000000$	-0.52	1.56	46.78	0.60	-1.65	78.28	7.30

$P_{x_1}^{\psi}$	$P_{y_1}^{\psi}$	$P_{z_1}^{\psi}$	$P_{x_2}^{\psi}$	$P_{y_2}^{\psi}$	$P_{z_2}^{\psi}$	$M_{\psi_1\psi_2}$	$P_{\psi_1\psi_2}^{\mathbf{T}}$
0.90	-1.52	80.15	-0.398	1.67	44.89	7.39	0.52
-1.41	-0.98	46.52	2.31	0.21	107.04	7.84	1.18
-0.34	-0.48	43.49	1.01	1.79	105.96	7.18	1.47
-0.55	-0.13	138.55	1.16	0.55	75.81	6.83	0.74
1.37	0.58	41.38	-0.87	-0.91	151.79	8.31	0.60
0.46	0.87	99.72	0.22	-0.49	36.14	7.14	0.78
-1.27	1.20	78.14	0.09	-0.95	63.28	6.71	1.20
2.86	-1.14	58.15	-1.72	1.93	77.19	8.43	1.39
0.13	0.36	28.17	-1.09	0.54	87.73	7.28	1.32
1.59	1.11	48.59	-1.14	-1.19	53.73	7.17	0.46
1.33	0.54	39.50	-0.61	0.18	78.89	6.99	1.02
-0.52	1.56	46.78	0.60	-1.65	78.28	7.30	0.12
0.60	0.49	75.49	-0.84	-1.67	23.62	8.17	1.20

All J/ψ pair events observed by NA3 were interpreted using intrinsic charm hypothesis $(|d\bar{u}c\bar{c}c\bar{c}\rangle)$ Fock component of pion).

Kinematic distributions are not corrected for the acceptance;

The new measurement by COMPASS allows to estimate contribution of different production mechanisms (including IC) into double J/ψ production cross section.

COMPASS Drell-Yan setup (2015, 2018)

Beam dump configuration:

- Optimized for muon registration;
- > 6M J/ψ in NH₃ target;

Unique hadron beam in DY runs :

- hadron beam composition: 96.80% π^- , 2.40% \bar{K} , 0.80% \bar{p} ;
- beam momentum : 190 ± 3 GeV/c;
- intensity: up to 7x10⁷ hadrons / sec;

J/ψ pair production mechanisms at COMPASS

Cross section of J/ψ pair production at nuclear targets

Results: Differential cross section of J/ψ pair production

The function $f(x_{||\ 2J/\psi}) = a \cdot f_{SPS}(x_{||\ 2J/\psi}) + b \cdot f_{IC}(x_{||\ 2J/\psi}) + f_{bkg}(x_{||\ 2J/\psi})$ is fitted to the data assuming that SPS and IC are the leading production mechanisms. The DPS contribution is not considered in the fit;

The results are consistent with pure SPS hypothesis. An upper limit on IC production mechanism is established: $\sigma_{2J/\psi}^{IC}/\sigma_{2J/\psi}\Big|_{x_F>0} < 0.24 \ (CL = 90\%).$

Results: the $M_{2J/\psi}$ spectrum

The $M_{2J/\psi}$ spectrum does not contain any evident signal from exotic states observed by LHCb. An upper limit on the number of X(6900) in the COMPASS data is established: $N_{X(6900)} < 6.7 \ (CL = 90\%)$ and $\sigma_{X(6900)} \cdot BR(X(6900) \rightarrow J/\psi J/\psi) = < 0.27 \ (CL = 90\%)$ $m[X(6900)] = 6886 \pm 11 \pm 11$ MəB $\Gamma[X(6900)] = 168 \pm 33 \pm 69$ MəB

 $\sigma_{2J/\psi}$

Results of the work are published in Phys.Lett.B 838 (2023) 137702

Backup slides

Single and double J/ψ events at COMPASS

 $x_{FJ/\psi} = 2p_I^* / \sqrt{s} > 0$

2015+2018: large statistics of single J/ψ events collected $NH_{2}: 6.23 \cdot 10^{6}$

AI:
$$0.46 \cdot 10^6$$

W:
$$2.51 \cdot 10^6$$

	NH ₃	Al	W	
$M_{J/\psi}, { m GeV}/c^2$	3.141 ± 0.009	3.138 ± 0.010	3.078 ± 0.009	
$\Delta_{J/\psi},{ m GeV}/c^2$	0.182 ± 0.008	0.202 ± 0.009	0.299 ± 0.011	

Signal and background events

Signal events: two J/ψ reconstructed in the same vertex, these $2J/\psi$ should appear as a result of a process: $\pi^- N \to J/\psi J/\psi + X$

Background events:

- **Pileup:** two J/ψ reconstructed in the same vertex, but produced in different interactions estimated to be negligible;
- Combinatorial background: J/ψ +2 μ or 4 μ ;
- *B*-meson pair decay: $B\bar{B} \rightarrow J/\psi J/\psi + X$

I	1113	AI	W
$N_{J\!/\!\psi}/10^{6}$	6.23	0.46	2.51
$N_{2J\!/\!\psi\ candidates}$	28	2	13
$N_{2J\!/\!\psi\ background}$	2.9 ± 0.5	1.4 ± 0.4	8.5 ± 2.0
$N_{2J\!/\!\psi}$	$25.1{\pm}0.5$	$0.6{\pm}0.4$	$4.5{\pm}2.0$

Statistics of J/ψ pair events in NH₃ target at COMPASS approximately two times higher than NA3 statistics.

Systematic uncertainties

Main sources of systematics:

• Uncertainty of $\sigma_{J/\psi}$: is taken from NA3 measurement:

$$\begin{split} &\sigma^p_{J/\psi} \cdot BR(J/\psi \to \mu\mu) = 6.3 \pm 0.8 \text{ nb/nucleon (NH}_3, \text{Al}) \\ &\sigma^{Pt}_{J/\psi} \cdot BR(J/\psi \to \mu\mu) = 4.9 \pm 0.77 \text{ nb/nucleon (W);} \end{split}$$

• J/ψ pair acceptance: takes into account uncertainty of $\frac{q\bar{q} \rightarrow J/\psi J/\psi}{gg \rightarrow J/\psi J/\psi}$, uncertainty

of detector and trigger efficiencies;

- J/ψ acceptance: takes into account uncertainty of detector and trigger efficiencies and uncertainty of PDF selection;
- combinatorial background: estimated with a toy MC; \bullet
- Number of single J/ψ : was estimated from the fit of dimuon mass distribution by different functions (modified Gaussian, Crystall Ball).

Differential cross section of J/ψ pair production

The function with one free parameter (SPS amplitude) is fitted to the data. The background contribution is fixed.

The $p_{T 2J/\psi}$ and $|\Delta x_{||}|$ distributions are in agreement with SPS model,