

The Scientific Conference of Young Scientists and Specialists "Alushta-2024"

Kinetics of DNA double-strand breaks formation in mature neurons of primary rat hippocampal cell culture under the action of ionizing radiation with different physical characteristics

Krupnova M. E.¹, Boreyko A. V.^{1,2}, Hramco T. S.^{1,2}, Pahomova N.V.¹, Shamina D.D.^{1,2}, Yasinskaya A.V.^{1,2}

¹Joint Institute for Nuclear Research, Laboratory of Radiation Biology, Dubna, Russia ²Dubna State University, Dubna, Russia

Introduction

The effects of radiation on the central nervous system are of major interest because of several issues:

- the manned deep-space missions
- Galactic Cosmic Rays Solar Protons Meavier Ions Trapped Particles Protons, Electrons, Heavy Ions

Cosmic radiation

Radiation therapy

• the widespread use of radiation in medical treatment

DNA damage Cognitive impairment

Double-strand break is one of the most critical types of DNA damage

Hippocampal functions

• Learning

Ionizing radiation exposure:

- Inhibits the adult hippocampal neurogenesis
- Reduces the dendritic arborization
- Impairs nerve impulse conduction
- Changes proteins expression and forms mutant proteins
- Causes cognitive impairment
- Violates animal spatial memory

The hippocampus is considered as one of the most radiosensitive brain structures due to the adult neurogenesis processes occurring in it.

Research aim

Investigation of the influence of radiation with different physical characteristics on DNA DSBs formation in mature neurons of rat primary hippocampal cell culture

Materials and methods

Materials and methods

- Irradiation
- Fixation 4% PFA
- Immunocytochemical staining for DNA DSBs markers and cell type markers
- Fluorescent microscopy
- Quantitative analysis

Radiation source	Е	LET, keV/µm	Angle,	Dose, Gy	Facility
⁶⁰ Co γ-rays	1.25 MeV	0.3	90	3	«Rocus-M» MTC LNR JINR
Protons	150 MeV	-	10	3	Synchrocyclotron MTC LNR JINR
15 N	14 MeV/nucleon	175	10	1.25	U400-M, LNR JINR

RIF (γ H2AX, γ H2AX/53BP1) – radiation induced foci

 γ H2AX - DNA DSBs MAP2 – soma, axon and dendrites

DAPI - cell nuclei

Merge

Measured parameters:

- The number and complexity of colocalized γH2AX/53BP1 foci in neuronal cells after γirradiation
- The number and complexity of γH2AX foci in mature neurons (MAP2+) after proton irradiation
- The number and complexity of γH2AX foci in mature neurons (MAP2+) after ¹⁵N ions irradiation
- The number and foci complexity shaped by nitrogen ions tracks

yH2AX foci cluster

Visualized track of nitrogen ions

The kinetics of γ H2AX and 53BP1 foci formation in mature neurons of primary rat hippocampal cell culture after exposure to radiation with different physical characteristics (x1000 magnification).

The structure of complex RIF clusters in mature neurons of primary rat hippocampal cell culture

The X-axis is a number of individual foci in a complex cluster, the Y-axis is a number of foci in clusters with defined complexity calculated relatively to the total number of analyzed RIF clusters in three dimensional space of nuclei.

The structure of complex RIF clusters in mature neurons of primary rat hippocampal cell culture

The X-axis is a number of individual foci in a complex cluster, the Y-axis is a number of foci in clusters with defined complexity calculated relatively to the total number of analyzed RIF clusters in three dimensional space of nuclei.

Conclusions

- The number of RIF is significantly higher after proton-irradiation in comparison with γ irradiation that could be connected with the features of the proton energy transmission
- The peak of RIF formation shifts as LET increases to the later post-irradiation time
- The number of RIF is 2.4 times higher 1h after nitrogen irradiation compared to gamma irradiation
- 24h h after nitrogen irradiation the RIF number remained preserved in contrast to proton irradiation: 21 γH2AX foci - ¹⁵N-ions, 13 γH2AX foci – protons
- The foci clusters complexity increases as LET grows that is clearly demonstrated by the dominance of foci clusters with the higher number of individual foci

Thank you for your attention!