Development of module for fitting distribution functions of quarks and gluons in mesons for xFitter package

Novikov Ivan

NEOVP LNP JINR

2018-06-14

Which particles constitute these hadrons?

Which particles constitute these hadrons?

The real picture is not as simple

Hadron structure is determined by strong interactions between valence quarks, gluons and sea of quark-antiquark pairs

Parton Distribution Function

- $f_i(x, Q^2) \approx$ density of partons of type i with fraction x of hadron's momentum
- Cannot be calculated in perturbative QCD \implies must be extracted from experiment
- Universal for all reactions with a given hadron type

xFitter xFitter project

Example of plots obtained with xFitter

- Mature feature-rich Open-Source QCD fit framework
- >60 published results
- Can estimate PDF sensitivity to new data
- Multiple theoretical schemes

xFitter xFitter project

Example of plots obtained with xFitter

No support for meson PDFs

Thank you for your attention!

Any questions?

Do I have time for a few backup slides?

DGLAP PDF evolution

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi Equations

$$\frac{\partial f_i(x,Q^2)}{\partial \ln(Q^2)} = \sum_{j \in \{q,\bar{q},g\}} \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},Q^2\right) f_j(z,Q^2)$$

• Evolve $f(x, Q_0^2) \rightarrow f(x, Q_1^2)$

• Splitting functions P_{ij} are derived in perturbative QCD

Fitting cycle

