MASS TESTING FINAL DESIGN REVIEW Testing methods N. Anfimov. L3 manager

Supported by

Russian Science Foundation Final design review 06.07.2022

Dr. Nikolay Anfimov

- photodetectors"
- (China), SiPM R&D.
- Start working at JINR in 2005

WHO AM I

- Ph.D. in Physics and Mathematics "Development and application of methods for studying

- Background in EM-calorimetry for COMPASS-II (CERN), APD and scintillator studying for NOvA (FNAL), 20-inches PMT scanning and testing for JUNO (China), SiPM testing for TAO

- Head of the Sector of Experimental Methods, Experimental Department of Particle Physics, Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research

TAO SIPM

>TAO physics goals	A
1. Model-independent reactor neutrino spectrum for	Lev
JUNO (with energy resolution $< 3\% / \sqrt{E}$).	(DN
2. A new benchmark to test the nuclear database	Fillin

Detector scheme

2.8t Gd-LS + 4π SiPM (~10m²) + 3.5t LAB/Silicon Oil (SO) Running at -50 °C, ~30m to core

SiPM Tiles

PDE ~ 50 % Coverage ~95% Size = $5x5 \text{ cm}^2$

HPK Array

4100 tiles

Sub detectors

1. Central detector (CD) Acrylic vessel + Gd-LS SiPM array + copper shell SS tank + LAB/Silicon Oil ACU (from DYB)

2. Veto and shielding LAB exhausting(DN40) and LS filling port(DN20) **HPDE** + **plastic scintillator** Top: Surround: Water tank+ PMT (3") This review addresses SiPM mass-testing 10-cm lead **Bottom:** and SiPM power system

Cryogenic system+ cooling pipes + Heat insulation (PU)

- Requirements and testing methods on SiPM testing. N. Anfimov
- SiPM burn-in testing. P. Hu
- Technical overview on SiPM mass-testing. A. Rybnikov
- SiPM power System. N.Anfimov

SIPM MASS-TESTING **REQUIREMENTS AND METHODS**

- Overview of requirements on SiPMs specifications
- Uniformity of breakdown voltage
- Range of operating voltage -
- Deviation of dark current
- DCR -
- Gain
- PDE deviation from effective PDE
- Crosstalks
- Afterpulses
- ΔPDE
- Summary

OVERVIEW OF REQUIREMENTS **ON SIPMS SPECIFICATIONS**

- Dimensions of Tiles
- 2. Window material
- 3. Defects in the window material (bubbles, pits, etc)
- 4. Cracks and pattern defects on silicon
- 5. Radio purity of Tiles
- 6. Compatibility with LAB
- 7. Type and mounting of connectors

II (d) Burning test

All will be carry out by IHEP group

OVERVIEW OF REQUIREMENTS **ON SIPMS SPECIFICATIONS** (for Mass testing)

- 8. Uniformity of breakdown voltage (Vbd) within 0.19V range
- 9. Range of operating voltage $(V_{op}) > 6.5V$
- 10. Deviation of dark current $@V_{op} \pm 95\%$
- 1. DCR in each channel < 41.7 Hz/mm²
- 12. Gain in each channel $> | \times | 0^6$
- 13. For each channel, $\Delta_{\underline{e}} \ge -25\%$ (PDE_{eff}, PDE, P_{cn})

Good uniformity over

Tile#	V _{bd}	V _{op} range
	47.5	3.0 ÷ 7.0
2	48.0 -	► 2.5 ÷ 6.5 ■
3	48.5	2.0 ÷ 6.0

DEVIATION OF DARK CURRENT [MAX: 95% / TYPICAL: 40% (4St. Dev.) from average value]

10

20

30

40 5 Dark current, nA

40 5 Dark current, nA

20

Direct measurement of dark current by means of Keithley 6487 picoammeter

Accuracy: $\pm (13.2 \div 3.3)\% (3 \div 7V)$

Single oscillogram

DARK COUNT RATE

Run parameters:

Parameters	Values	Units
Time window	10	us/oscillogra
Number of oscillograms	30k	-
Total acquisition time	0.3	second
SiPM area	144	mm ²

Expected DCR

DCR	Rate@-50°C/mm ²	Rate@-50°C/ SiPM	Accura [Istd.d
Minimal	10 cps	430 cps	~4.8
Typical	13.9 cps	600 cps	~4.19
Maximal	41.7 cps	1800 cps	~2.4% (+

Max probability of pile-ups:

Typical pulse duration: 500 ns Average rate in window (lus): 0.006 [2pulses*500ns*144mm2*41.7cps] Probability of pile-up (2 or more pulses): 0.002%

DARK COUNT RATE [MAX: 41.7 Hz/mm² / TYPICAL: 13.9 Hz/mm²]

ADC data file

(AIN)[MIN: IE6 / TYPICAL: 4E6]

$$GAIN_{pixel} = \frac{P0 - P1}{K_{amp} \cdot q}$$

@ the full length of signals

PO - pedestal position PI - position of the 1st peak Kamp - coeff. of the amplifier q - elementary charge

Accuracy: $\pm (0.42 \div 0.13)\% (3 \div 7V)$

Estimation of the number of photoelectrons

CROSSTALKS [MAX: 15% / TYPICAL: 12%]

Absolute PDE value:

 $PDE_{tao\ sipm} = \frac{\mu_{tao\ sipm}}{\mu_{ref\ sipm}} \times PDE_{ref\ sipm}$

Number of photoelectrons: (µtao sipm, µref sipm) Accuracy: $\pm 0.55\% (3 \div 7V)$

Accuracy depends on calibration of Ref.SiPMs (IHEP team) Accuracy: $\pm 3\%$

SUMMARY

- Method maturity ~100% -
- Equipment maturity ~50%

 - Missing components: mechanics, interface and mother PCBs
- Software maturity ~70%
- Export restrictions from Russia -
 - Partial production in China
- Total cost: ~60k\$ (Onsite) —
- Semi-Clean room, gloves, ESD protection, wearing

- Existing components: PS boards, ADCs, Light system, Current system, Trigger unit

- ADC SW no CLI, PS SW no CANOpen support, Analysis SW no WF analysis

BACKUP SLIDES

AFTERPULSES [MAX: 8% / TYPICAL: 4%]

Outstanding issues:

what is the gate for afterpulse estimation

what is the minimal time to resolve afterpulse signals from the prime pulse

Afterpulse estimation techniques: I. Fast/Total

Integration of waveforms in the long/ short time gates:

-(QLong right - QShort)/QLong right — (QLong left - QShort)/QLong left Estimation of afterpulse probability: $P_{afterpulse} = P_{N0} - P_{D0}$ where: $P_{N0} = N_0/Entries$, $P_{D0} = D_0/Entries$

2. Fitting of waveforms

- requires computing power
- offline analisys
- is not resolved within 100-200 ns

AFTERPULSES

