SIPM POWER SUPPLY SYSTEM FINAL DESIGN REVIEW

Supported by

Russian Science Foundation

Dr. Nikolay Anfimov

- photodetectors"
- (China), SiPM R&D.
- Start working at JINR in 2005

WHO AM I

- Ph.D. in Physics and Mathematics "Development and application of methods for studying

- Background in EM-calorimetry for COMPASS-II (CERN), APD and scintillator studying for NOvA (FNAL), 20-inches PMT scanning and testing for JUNO (China), SiPM testing for TAO

- Head of the Sector of Experimental Methods, Experimental Department of Particle Physics, Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research

OUTLINE

- I. Requirements to SiPM PS system
- 2. Baseline design of SiPM PS system
- 3. Feedthrough for SiPM PS system
- 4. PS cost estimation
- 5. Progress and time schedule of SiPM PS system

REQUIREMENTS

- Individual HV channel adjustment ~10 mV
- Operating voltage up to 120V (2 SiPM in series) -
- Current ratings: ~ 100uA @ RT, < 1uA @ -50°C
- Voltage stability level ~ 30 mV (signal variation ~ 1% / Tile)
- VME 6U mechanics
- Power delivery @ -50°C, LAB-compatible
- Slow control (GUI interface)
- Power supply rack temperature stability ~2-3 deg.

BASELINE PS SYSTEM DESIGN

Copper shell with tiles

2048 channels

Ribbon cables (~4m long) which splitted onto pairs at their ends

2048 channels

lile

Inner side of SS tank

2 × FEEDFR OUGH

HV

GND

inner 64pin IDC connector

Outer side of SS tank

SiPM Power Supply

GND

HV

4VME crates 16 modules each 4 control units >4000 channels

+

External constant current power supply (with SHV splitter)

PS UNIT TYPES & QUANTITY

4xVME 6U crates

128 channel power supply unit VME 6U PCB unit

External constant current power supply (SHV splitter)

32x power units / 4x control units ~4100 channels

120V

SPECIFICATION OF PS UNITS

Power unit

- VME mechanics
- 128 channels
- up to 200V/ch
- up to 550uA/ch
- IxSHV connector
- 2x 68pin IDC connectors
- Output voltage monitor (24bit ADC)
- 4x 14bit DAC chips
- CANOpen protocol

Control unit

- VME mechanics •
- Micro PC: phyCORE-i.MX7 •
- CAN-int, CAN-ext •
- 2x connection interfaces: • IGBPS (SFP) and IOOMBPs (R]45)
- COM port (RS232) and • USB (B type) for direct access to the micro PC
- Reset button on the front panel
- 2x status LEDs (Power/Err) •

PILOT PROTOTYPES OF PS UNITS

Power Unit

Control Unit

BASELINE FEEDTHROUGH DESIGN

MOUNTING PROCEDURE

1) soldering of external housed connectors on the Feedthrough PCBs out of the flange

2) soldering of inner 3) fixing of support housed connectors on the structure on the flange Feedthrough PCBs out of the flange

6) installing feedthrough onto the SS tank wall to have ability for soldering of inner ribbon cables at the upper side 7) plugging of inner ribbon cables into connectors (or soldering cables) onto the PCB which is on the top side of feedthrough (optionally sealing), installation of clamps

4) inserting of PCBs into the flange (inner connectors outward faced) and fixing them on the support structure with two bolts

8) rotating of feedthrough to have the next PCB at top position and repeating of 7th step

9) splitting of inner ribbon cables at the their ends onto pairs for each SiPM Tile

lile

10) connecting of the pairs to its own tile

PILOT PROTOTYPES OF PS FEEDTHROUGH

Single PS Feedthrough PCB

3 Feedthrough boards are ready: 2 - for upcoming prototype TAO test and 1 - for internal tests

ltem	Unit price, k\$	Quantaty, pcs	Total, k\$
Power Unit	3 (2)	32 + 8 spare	I 20 (80)
Control Unit	3 (2)	4+1 spare	I5 (10)
Ext. constant PS (120V)	2	4 + 1 spare	10
Crate	8 (6)	4 + 1 spare	40 (30)
Cables, Connectors, Feedthroughs			5
Environmentals (Room with AC)			15
Total			255 (150) k\$

PS COST ESTIMATION

PS PROGRESS & TIME SCHEDULE

Early 2022	 PS board samples production & testing (JINR & Marathon) testing control software (CLI interface) 	done done
June 2022	 shipment of PS and controller samples to China 	done
Early 2022	 calibration of PS samples (10 boards,CAN protocol) production of 3 PS Feedthrough samples 	done done
Late 2022	 control software developing for PS boards (CANOpen) 	in progress
< 6 month	Full production of PS boards	China
< 6 month	Testing and calibration	China

SUMMARY

- System design maturity ~ 90%
- Prototyping ~ 70%
- Software maturity ~70%
- Export restrictions from Russia
 - Full production in China
- Total cost: \sim 150-250k\$ (200k\$ is booked at JINR)
- Silicon crisis: procurement in advance.

