# Renormalization group analysis of two-species reaction-diffusion system: Crossover between long-range and short-range spreading 

M. Hnatič ${ }^{1,2,3}$, M. Kecer ${ }^{1}$ and T. Lučivjanský ${ }^{1}$<br>${ }^{1}$ Faculty of Sciences, P.J. Šafárik University, 04154 Košice, Slovakia,<br>${ }^{2}$ Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia,<br>${ }^{3}$ Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia. E-mail: matej.kecer@student.upjs.sk

In this work we focus on two-species reaction-diffusion system with the reactions $A+A \rightarrow(\emptyset, A), A+B \rightarrow A$, with general diffusion constants. Such a system was studied earlier at and below its upper critical dimension $d_{c}=2$ in [1,2], and also in the presence of long-range spreading with fractional Laplace operator $\partial^{\sigma} \equiv \partial^{2(1-\alpha)}$ [3]. In the latter case, however, only long-range limit was explored $(\alpha \gg)$, where $\varepsilon=d_{c}-d=2-d$. Here, we study the hybrid regime in which parameters $\alpha$ and $\varepsilon$ are of the same order, i.e. $\alpha=O(\varepsilon)$. Our primary theoretical tool is field-theoretic perturbative renormalization group augmented with the approach of Honkonen and Nalimov [4]. The model is renormalized to all orders of perturbation theory, stable long-time asymptotic regimes are identified and time-decay exponent of respective particle densities is calculated.

## References

[1] R. Rajesh and O. Zaboronski, Survival probability of a diffusing test particle in a system of coagulating and annihilating random walkers, Phys. Rev. E 70, 036111 (2004).
[2] B. Vollmayr-Lee, J. Hanson, R. S. McIsaac, J. D. Hellerick, Anomalous dimension in a two-species reaction-diffusion system, J. Phys. A: Math. Theor. 51, 034002 (2018).
[3] D. Shapoval, V. Blavatska, M. Dudka, Survival in two-species reactiondiffusion system with Lévy flights: renormalization group treatment and numerical simulations, J. Phys. A: Math. Theor. 55, 455002 (2022).
[4] J. Honkonen and M.Yu. Nalimov, Crossover between field theories with shortrange and long-range exchange or correlations, J. Phys. A: Math. Gen. 22, 751 (1989).

