Комбинационное рассеяние в монослое MoS_2 на кварцевой подложке. Расчет из первых принципов.

Н.Л. Мацко 1 , Д.А. Шохонов 1 , В.А. Осипов 1

¹ ОИЯИ, Дубна, Россия. matsko@theor.jinr.ru

Дисульфид молибдена MoS_2 - перспективный представитель класса дихалькогенидов переходных металлов. Высокая подвижность носителей, высокие поверхностная активность и коэффициент адсорбции, изменение величины запрещенной щели с количеством слоев и т.д. делают гетероструктуры MoS_2 многообещающими в оптоэлектронике. Комбинационное рассеяние (KP) - эффективный инструмент, позволяющий получить информацию о динамике ионной системы и структуре исследуемого объекта. KP широко используется при изучении гетероструктур MoS_2 на различных подложках, полученных как отслаиванием, так и с помощью хим. осаждения из паровой фазы (CVD). При этом взаимодействие с подложкой влияет на колебательные спектры атомов MoS_2 , что, в свою очередь, проявляется в спетрах KP исследуемой гетероструктуры. Теоретическое описание механизмов, лежащих в основе результирующей картины, может оказать существенную помощь в анализе полученных спектров KP. Среди доступных численных методов расчеты на основе DFT дают наиболее точные результаты.

Целью работы является DFT анализ интерфейса между монослоем ${\rm MoS_2}$ и кварцевой подложкой ${\rm SiO_2}$ и его влияние на вид KP. Рассматриваются возможные варианты структурирования поверхности, возникающие, в том числе, при различных условиях синтеза. Исследованы три типа поверхности ${\rm SiO_2}$ и, соответственно, три типа интерфейса ${\rm MoS_2/SiO_2}$. Первый - интерфейс с "плотной" поверхностью кварца. Это можно рассматривать как идеальную ситуацию, когда пленка ${\rm MoS_2}$ переносится на подложку ${\rm SiO_2/Si}$ отслаиванием. Другой тип интерфейса - при наличии ковалентных связей между атомами кислорода в ${\rm SiO_2}$ и атомами серы в ${\rm MoS_2}$, что может быть реализовано в процессе CVD. И, наконец, третий вариант - "шершавая" поверхность, поверхность с дефектами, когда не реализуется ни первый, ни второй варианты интерфейса. Такая поверхность будет характеризоваться наличием атомов кислорода, "торчацих" из поверхности кварца и связанных только с одним атомом кремния. Рассмотренные интерфейсы не исчерпывают все возможные варианты, но позволяют выявить основные особенности комбинационного рассеяния света в монослое ${\rm MoS_2}$ на кварцевой подложке.