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Abstract

The study of developed turbulence in electrically conducting fluid driven
by the stochastic Navier-Stokes equation has been a subject of intense
study [1, 2, 3]. A special role in this regime is played by the prop-
erties of the system associated with fluctuations in the magnetic field.
In particular, they hold pivotal importance in comprehending diverse
convective processes, astrophysics, and cosmology, particularly in eluci-
dating the genesis and progression of large-scale cosmic magnetic fields
through the so-called turbulent dynamo mechanism. This effect is most
conspicuous in chiral (gyrotropic) fluids, characterized by parity viola-
tion, and is intricately linked to the conservation of magnetic helicity.
Our research uses field-theoretic methods to propose a general scenario
for the generation and renormalization of arising homogeneous magnetic
field. We delve into a quantum-field model of stochastic MHD [4, 5],
specifically exploring mirror symmetry. Emphasis is placed on analyzing
the stability of this system, which is attributed to the emergence of a
non-vanishing average large-scale homogeneous magnetic field. In order
to clarify the previously obtained one-loop results [5] for the value of
spontaneous magnetic field and deformation of Alfvén waves we use two-
loop calculations. These complex two-loop calculations are necessary for
a self-consistent conclusion that the mechanism of system stabilization
(turbulent dynamo) is not destroyed by the influence of higher orders of
perturbation theory.
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