Competition of the magnetic and charge ordering in orthonickelates <u>**Y.D. Panov**¹</u>, **V.S. Ryumshin**¹, **V.A. Ulitko**¹, and **A.S. Moskvin**^{1,2}

¹Ural Federal University, 19 Mira street, 620002 Ekaterinburg, Russia ²Institute of Metal Physics, 18 S. Kovalevskaya st., 620108 Ekaterinburg, Russia yuri.panov@urfu.ru

Rare-earth orthonickelates RNiO₃ have attracted continuous interest of researchers in the last decades [?]. We consider these systems as Jahn-Teller (JT) magnets [?], in which the low-energy state is formed by a charge multiplet $[NiO_6]^{10-,9-,8-}$ (nominally $Ni^{2+,3+,4+}$) with different spin and orbital ground states. The Ni^{3+} ion in the low-spin configuration of the NiO₆ octahedron $t_{2g}^6 e_g^1$ forms a JT center with a ground orbital doublet ${}^{2}E$. However, the orbital degeneracy in RNiO₃ is lifted due to the charge disproportionation with the formation of Ni^{4+} and Ni^{2+} centers [?, ?]. In this case, the electronic structure of the orthonikelate can be represented as a system of local composite spin-triplet bosons with the configuration $e_g^{2,3}A_{2g}$ moving in a lattice of non-magnetic centers with the configuration $t_{2\rho}^6$. The phase diagram for such a triplet boson system in the mean-field approximation [?] shows the phases of charge ordering, antiferromagnetic insulator, and spin-triplet superconductor, as well as the phase-separated states. With all the variety of possible phase states, the type of phase transition to the charge-ordered state, as well as the accompanying effects of structure change in nickelates remain beyond the scope of the model [?]. The aim of the present work is to describe these key properties, which leads to the need to include a full octet of low-energy states in the model and to account for the interaction of the electron subsystem with the lattice.

The work was supported under grant FEUZ-2023-0017 of the Ministry of Science and Higher Education of the Russian Federation.

References

- [1] M.L. Medarde, J. Phys.: Condens. Matter 9, 1679 (1997).
- [2] A. Moskvin, Magnetochemistry 9, 224 (2023).
- [3] I.I. Mazin, D.I. Khomskii, R. Lengsdorf, J.A. Alonso, W.G. Marshall, R.M. Ibberson, A. Podlesnyak, M.J. Mart?nez-Lope, M.M. Abd-Elmeguid, Phys. Rev. Lett. 98, 176406 (2007).
- [4] A.S. Moskvin, J. Phys.: Condens. Matter 25, 085601 (2013).
- [5] V.S. Rumshin, S.V. Nuzhin, Y.D. Panov, A.S. Moskvin, Phys. Solid State, 66, to be published (2024).