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• The aim of work

Theoretical study of the processes of Coulomb breakup of halo nucleus- 11 Be
in the framework of a non-stationary quantum-mechanical approach.

• Relevance of the research topic:

A theoretical investigation of the halo nuclei is relevant with the planned
experiments on the study of light nuclei on radioactive beams.
Coulomb breakup is one of the main tools for studying the halo nucleus.
The breakup cross section provides useful information about the structure of
the halo.
The halo is one of the most intensively studied objects in modern low-
nucleus physics. A characteristic feature of halo nuclei physics is correlations
between the mechanism of nuclear reaction and structure.



HALO

The neutron halo effect is caused by the presence of weakly bound states of neutrons located near the
continuum. The small value of the binding energy of a neutron (or a group of neutrons) and the short-
range nature of nuclear forces lead to the tunneling of neutrons into the outer peripheral region over large
distances from the core of the nucleus.



Among the halo nuclei, the 11Be nucleus is of particular importance, 
since the relative simplicity of its structure allows for more accurate 
theoretical studies. In fact, the bound states of the 11Be nucleus can 
be described quite well as a 10Be core and a weakly bound neutron. 
With a good approximation, the decay can be regarded as a 
transition from a two-particle bound state to a continuum due to a 
changing Coulomb field



Stationary Schrodinger equation:

𝑯𝝍𝑵𝒍𝒎 = 𝑬𝑵𝝍𝑵𝒍𝒎 (1)

with boundary conditions:  
𝝍
𝑵𝒍𝒎

𝒓 = 𝟎 = 𝒄𝒐𝒏𝒔𝒕;

𝝍𝑵𝒍𝒎
𝒓 → ∞ =𝟎

The Hamiltonian of the interaction:        𝑯𝟎 𝒓 = −
ħ𝟐

𝟐𝝁
∆ + 𝑽𝒄𝒇(𝒓) (2)

𝜇 =
𝑚𝑛∙𝑚𝑐

𝑀
-reduced mass;

𝝍𝑵𝒍𝒎 𝒓 = 𝑹𝑵𝒍 𝒓 𝒀𝒍𝒎 𝜽,𝝋 (3)

the radial SE:    −
ħ𝟐

𝟐𝝁
∆ +

ħ𝟐𝒍 𝒍+𝟏

𝟐𝝁 𝒓𝟐
+ 𝑽𝒄𝒇 𝒓 𝑹𝒍 𝒓 = 𝑬 𝑹𝒍 𝒓 (4)

internal interaction:  𝑽𝒄𝒇 𝒓 = 𝑽𝟎 𝒓 + 𝑳𝑰𝑽𝑳𝑰(𝒓) (5)

Wood-Saxon potential:  𝑽𝟎 𝒓 = −𝑽𝒍 𝒇(𝒓, 𝑹𝟎, 𝒂)

where 𝒇 𝒓, 𝑹𝟎, 𝒂 = 𝟏 + 𝒆𝒙𝒑
𝒓−𝑹𝟎

𝒂

−𝟏
(5’)

Spin-orbital interaction:   𝑽𝑳𝑰 𝒓 = 𝑽𝑳𝑺
𝟏

𝒓

𝒅

𝒅𝒓
𝒇(𝒓, 𝑹𝟎, 𝒂) (6)

[P.Capel, D.Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003).]



𝑉𝑙=0
(MeV)

𝑉𝑙>0
(MeV)

𝑉𝐿𝑆
(MeV fm2)

a

(fm)

R0

(fm)
59.5 40.5 32.8 0.6 2.669

[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).]
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Parameters of potential

l=0
Wood-Saxon potential:  

𝑽𝟎 𝒓 = −𝑽𝒍 𝒇(𝒓, 𝑹𝟎, 𝒂)

𝒇 𝒓, 𝑹𝟎, 𝒂 = 𝟏 + 𝒆𝒙𝒑
𝒓−𝑹𝟎

𝒂

−𝟏

Spin-orbital interaction:   

𝑽𝑳𝑰 𝒓 = 𝑽𝑳𝑺
𝟏

𝒓

𝒅

𝒅𝒓
𝒇(𝒓, 𝑹𝟎, 𝒂)

Here Vl is the depth of the Woods-Saxon potential, a is the diffuseness, and R0 is the radius of the 11Be 
(R0 = 1.2A1/3 fm). The standard value VLS is used for the potential depth ls for the p-shell core



1. Inverse iteration method in the 
subspace

 𝐴 𝑅 = 𝐸𝑅
 (𝐴 −  𝐼𝐸 0 ) 𝑅 𝑖 = 𝑅(𝑖−1)

𝐸 = 𝐸0 +
𝟏

 𝑅(𝒊), R(𝒊−𝟏)

,  𝑖 = 1, 𝑖𝑚𝑎𝑥 (7)

where 𝐸0 - initial approximation,  𝑅 0 – initial vector,

and the calculated vector  𝑅 𝑖 is normalized at each 

iteration  𝑅 𝑟 =  φ(𝑖𝑚𝑎𝑥)

2. Sweep method
The solution will be sought in the form:

 𝑅𝑗−1 = 𝛼𝑗−1  𝑅𝑗 + 𝛽𝑗−1 (8)
 𝑅j = αj

′ Rj+1 + βj
′

3. The second-order differential can be simplified using 
the finite-difference method:

𝑑2

𝑑𝑟2
(𝑅𝑗

(1)
)= 

𝑅𝑗+1
(1)

−2𝑅𝑗
(1)

+𝑅𝑗−1
(1)

(∆𝑟)2
(9)

Numerical methods of solving stationary SE

Accuracy of the method:

∆𝑖= 𝐸 𝑖 − 𝐸 𝑖−1 < 10−6

or 
𝛿𝑖 < 10−6:

 (𝐴 −  𝐼𝐸 𝑖 ) 𝑅 𝑖 = 𝛿𝑖



Jπ l Eexp (MeV)

[1]

Eth (MeV)

1

2

+ 0 -0.503 -0.5013

1

2

− 1 -0.183 -0.1844

RESULTS:

Energy 

Convergence of the computational scheme for uniform 
radial grid (l=0)

Nr ∆𝐫 E, l=0
500 0.08 -0.501317

1000 0.04 -0.505251

2000 0.02 -0.507165

4000 0.01 -0.508109

Radial WF of 2s-state (l=0)

[1] F.Aizenberg-Selove, Nucl.Phys.A506,1 (1990)



The splitting of the ground state energy levels of 11Be due to 
the influence of an external magnetic field 

The radial Schrödinger equation adding an external field ∆𝑉𝜇:

ℏ2

2𝜇

𝑑2

𝑑𝑟2
+

ℏ2 𝑙 𝑙+1

2𝜇𝑟2
+ 𝑉 𝑟 + ∆𝑉𝜇 𝑅𝑙 𝑟 = 𝐸𝑅𝑙 𝑟 (10)

∆V𝜇= B ∙ μn ∙  S𝑛,             (11)

here В - is the strength of the magnetic field, 𝜇𝑛 - is the magnetic

moment of the neutron,  𝑆𝑛 - the projection of the spin on the axis.

 𝑠𝑧 = ±
1

2

1 0
0 −1

(12)

Gauss form of potential     𝑉 𝑟 = 𝑉0𝑒
−

𝑟

𝑟0

2

= 𝑉0𝑒
−𝑔𝑟2

here 𝑉0 = − 59.5MeV, the potential width  𝑔 =
1

𝑟0
2 = 0.117 𝑓𝑚−2. 

Wood-Saxon form: V0 r = −Vl × 1 + exp
r−R0

a

−1



Rm=8

M=20

0

ΔEpert(Bz)

perturba

tion

ΔEnum(B

Z)

Gauss 

num. 

ΔEnum(BZ)

WS num. 

ΔEpert(Bz)

perturbati

on

ΔEnum(Bz)

Gauss 

num. 

ΔEnum(BZ)

WS num. 

B

(Gaus

s)

ms=+1/2 spin projection ms= - 1/2  spin projection

0.1 0.0003 0.0003 0.0003 -0.0003 -0.0003 -0.0003

1 0.0030 0.0030 0.0030 -0.0030 -0.0030 -0.0030

10 0.0300 0.0301 0.0301 -0.0300 -0.0300 -0.0300

100 0.3008 0.3008 0.3008 -0.3008 -0.3008 -0.3008

200 0.6016 0.6016 0.6016 -0.6016 -0.6016 -0.6016

300 0.9024 0.9025 0.9025 -0.9024 -0.9025 -0.9025

400 1.2033 1.2033 1.2033 -1.2033 -1.2033 -1.2033

500 1.5041 1.5041 1.5041 -1.5041 -1.5041 -1.5041

1000 3.0082 3.0082 3.0082 -3.0082 -3.0082 -3.0082

2000 6.0165 6.0165 6.0165 -6.0165 -6.0165 -6.0165

The energy shifts of the ground state of 11Be due to the influence of an external magnetic field

The energy shifts in perturbation theory are calculated as:

∆𝐸1

2

=  0
∞
𝑅0 𝑟 ∆𝑉1

2

(𝑟) 𝑅0 𝑟 𝑑𝑟

∆𝐸
−
1

2

=  0
∞
𝑅0 𝑟 ∆𝑉

−
1

2

(𝑟) 𝑅0 𝑟 𝑑𝑟

The level shifts are defined as (numerically):

∆E
m=

1
2
=< Rlm

(r)
|
1

2
∙ B ∙ μn|Rlm

(r)
>

∆E
m=−

1

2

=< Rlm
(r)
| −

1

2
∙ B ∙ μn|Rlm

(r)
>



a) when the spin is directed upwards (+1/2) and b) when the spin is directed downward (-1/2). 

Black is denoted to the Woods-Saxon (WS) potential, red line is Gauss (G).

a)
b)

Radial wave functions:



Conclusion and further research

 In this work the energy levels of the 11Be nucleus were reproduced by 
numerical methods as in [1,2]. 

 The 11Be nucleus is regarded as a neutron halo consisting of a 10Be core and 
one neutron. The internal interaction between the core and fragment includes 
Woods-Saxon potential and spin-orbit terms[1,2]. 

 Also, the energy level shifts were calculated taking into account the influence 
of the magnetic field, using two different potentials: the Woods-Saxon and 
Gauss forms for comparison. The numerical results coincide with the 
analytical solution, and the first order of perturbation theory is chosen as the 
analytical one.

 This work is the initial stage on theoretical study of the breakup of halo nuclei 
within quantum-mechanical approach. The next point is to numerically solve 
the time-dependent SE by using the solution of stationary SE as an initial 
condition, when the system is in its ground state.  

[1] V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).
[2] P.Capel, D.Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003).]
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