
FUMILI-based minimization with constraints
using method of elimination of differentials

Kurbatov V. S., Tokareva V.A.∗, Tsirkov D.A.
DLNP, JINR, Dubna, Russia

∗tokareva@jinr.ru

The XXII International Scientific Conference of Young Scientists and Specialists
(AYSS-2018)

April 24, 2018

1 / 16

FUMILI minimizer

FUMILI is one of the first minimizers included into ROOT release. It
has been showing it’s reliability, stability and high convergence rate
while it had been being used by scientific community for decades.

The greedy minimization algorithm which is employed in FUMILI was
first proposed at JINR by S. Sokolov and implemented by I.N. Silin
and V. S. Kurbatov.

FUMILI provides an optimal solution for χ2-like functionals (1)
employing linearization:

F (x) =

K∑
k=1

f2
k (x) =

K∑
k=1

(
Yk − Tk(x)

σk

)2

, (1)

where Yk are measured values with errors σk, k ∈ [1,K], and Tk(x) are
the values predicted by the model, depending on some parameters
x = {x1, . . . , xn}.

2 / 16

Linearization method in minimizing χ2-like functionals

The second derivative
∂2F

∂xixj
could be found the following way:

∂2F

∂xi∂xj
=

∂

∂xi

∂

∂xj

K∑
k=1

f2k (x) =
∂

∂xi

K∑
k=1

2fk(x)
∂fk(x)

∂xj
=

= 2

K∑
k=1

(
∂fk(x)

∂xi

∂fk(x)

∂xj
+ fk(x)

∂2fk(x)

∂xi∂xj

) (2)

Linearization means discarding the second term fk
∂2fk
∂xi∂xj

employing second

derivatives, that is considered small in comparison to the first one
∂fk
∂xi

∂fk
∂xj

.

Its main benefit is that the error matrix for a linearized functional is always
positively defined, and thus each step leads to a minimum.

3 / 16

What are constraints

Constraints: additional restrictions on the minimization problem
in form of equations

Φ(x) =


φ1(x) = 0,

· · ·
φm(x) = 0.

(3)

x = {x1, . . . , xn}: a vector of parameters, usually m < n.
Simple cases: redundant parameters of functional (1) could be

eliminated directly by solving the system (3).
Complicated cases: the constraint equations could be non-linear,

thus it is impossible or impractical to solve (3).

4 / 16

What is kinematic fitting

The problem of minimizing functionals with constraints arises, for
example, in the task of kinematic fitting.

Kinematic fitting
I Tracking detectors provide the coordinates of the triggered

sensitive elements along with their errors;
I Track-finding involves fitting the particle trajectories to these

coordinates;
I Sometimes, when the reaction channel is known, the additional

information on kinematics could be utilized in terms of
conservation laws:

∑
Einitial =

∑
Efinal,

∑
~Pinitial =

∑
~Pfinal;

missing mass:
∣∣∣∑P

(4)
initial −

∑
P

(4)
final

∣∣∣2 = M2
X ;

This is called kinematic fitting.

5 / 16

History of constrained minimization

Method of Lagrange multipliers
I First proposed at early sixties, see e. g. J. P. Berge, F.T. Solmitz,

H.D. Taft, Rev. Sci. Instr. 32 (1961) 538;
I Uses Lagrange multipliers λi, obtained from the equations

∂Ψ

∂x1
=
∂Ψ

∂x2
= · · · = ∂Ψ

∂xn
= 0,

where Ψ(x) = F (x) +

m∑
i=1

λiφi(x);

I Still the most widely used method for kinematic fitting, see e. g.
KWFIT package http://www.phys.ufl.edu/~avery/kwfit/.

6 / 16

History of constrained minimization

Penalty-function method
I Proposed in JINR in mid-sixties, see V.I. Moroz, JINR

communications R-1958 (1965);
I Adds a so-called “heavy term” to the minimized functional,

designed in a way that values of constraint functions approach zero
as this term approaches infinity:

Ψ̃(x) = F (x) + T
m∑
i=1

φ2
i (x), T →∞.

I The method is very robust and almost always converges, which
could be both a benefit (you won’t miss a minimum) and a
drawback (you should carefully control that your minimum is
reasonable).

7 / 16

Method of elimination of differentials

In the neighborhood of a point x0 the functional F (x) could be expressed as

F (x0 + ∆x) = F (x0) +

n∑
i=1

∂F (x0)

∂xi
∆xi +

1

2

n∑
i=1

n∑
j=1

∆xi
∂2F (x0)

∂xi∂xj
∆xj

= F (x0) +G(x0)∆x +
1

2
∆xTZ(x0)∆x,

(4)

and the constraints Φ(x) as

Φ(x0 + ∆x) =


φ1(x0)+

n∑
i=1

∂φ1(x0)

∂xi
∆xi

· · ·

φm(x0)+

n∑
i=1

∂φm(x0)

∂xi
∆xi


= Φ(x0) +D(x0)∆x. (5)

Here G, Z and D are the derivatives in matrix form.

8 / 16

Method of elimination of differentials
In the matrix equation Φ(x) = Φ(x0) +D(x0)∆x the rectangular matrix D
has m rows and n columns (we have n parameters and m constraints).

The vector ∆x could be split into ∆xc that has m components, and ∆xf that
has n−m components; the same could be done with the matrix D. Then

Φ(x) = Φ(x0) +Dc(x0)∆xc +Df (x0)∆xf . (6)

Since (6) is a linear equation, ∆xc could be expressed via ∆xc, resulting in

∆xc = v +M∆xf . (7)

Returning to the initial functional (4)

F (x) = F (x0) +G(x0)∆x +
1

2
∆xTZ(x0)∆x,

we could employ (7) to eliminate the sub-vector ∆xc, and obtain a similar
functional, in contrast depending on only n−m increments ∆xf :

F (x) = F ′(x0) +G′(x0)∆xf +
1

2
∆xT

f Z
′(x0)∆xf . (8)

9 / 16

Integration with TVirtualFitter

ROOT

TVirtualFitter

TFumili

TFumiliConstraints

10 / 16

User API

void FCN(int & n_par , double * grad ,
double & val , double * par , int flag);

/* ... */
TFumiliConstraints * fum = new TFumiliConstraints;
// set objective function
fum ->SetFCN(FCN);
// set parameters
fum ->SetParNumber(2);
fum ->SetParameter(0, "#alpha", .5, 0.01, 0, 0);
fum ->SetParameter(1, "#beta", .0, 0.01, 0, 0);
// set constraints
fum ->SetConstrNumber(1);
fum ->SetConstraint(0, [](double * p){

return p[0]*p[0] + .5*p[1] - 1.3;
});
fum ->SetConstrDeriv(0, 0, [](double * p){ return 2*p[0]; });
fum ->SetConstrDeriv(0, 1, .5);
// minimize
fum ->Minimize ();

11 / 16

Testing on a “toy” sample

A set of 500 000 (a, b) events, Monte-Carlo generated according to the
function 1 + x1a+ x2a

2 + x3b+ x4b
2 with parameters {x1 = 0.5, x2 = 0.3,

x3 = 0.8, x4 = 0.1}; and fitted using an event-by-event log. likelihood method
with constraints x21 + x1x4 − x24 = 0.29, x22/x3 = 0.1125.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4
x

3
x

2
x

1
x

Parameter True values Unconstrained fit Constrained fit
x1 0.5 0.526± 0.037 0.496± 0.006
x2 0.3 0.274± 0.032 0.301± 0.006
x3 0.8 0.808± 0.039 0.801± 0.030
x4 0.1 0.111± 0.033 0.114± 0.023

12 / 16

Kinematic fitting at ANKE

I Reaction pp→ pp at ANKE;
I Undetected proton;

I A constraint
∣∣∣P (4)

beam + P
(4)
targ − P

(4)
p

∣∣∣2 = m2
p.

(H2)

13 / 16

Kinematic fitting at ANKE

| [GeV]cm

p
|P

0.55 0.6

n
u
m

b
e
r

o
f
e
v
e
n
ts

0

2000

4000

6000

8000

10000

12000

14000

| [GeV]cm

p
|P

0.55 0.6

n
u
m

b
e
r

o
f
e
v
e
n
ts

0

100

200

300

400

500

600

700
3

10×

 [
d
e
g
]

c
m

p
θ

∆

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

 [deg]cm
pθ

10 12 14 16 18 20 22

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

 [
d
e
g
]

c
m

p
φ

∆

1−

0.5−

0

0.5

1

 [deg]cm

p
φ

150 160 170 180 190 200 210

1−

0.5−

0

0.5

1

Errors of reconstructed proton momentum in polar coordinates
(|P cm

p |, θcm
p , φcm

p) for the pp→ pp reaction at ANKE, simulated for
Tbeam = 700 MeV with and without kinematic fitting.

14 / 16

Outlook

I Refactoring the code and covering it with tests;
I Adding the method of Lagrange multipliers to the code;
I Adding the penalty-function method to the code;
I Open-source release.

15 / 16

Thank you
for your attention!

Any questions?

16 / 16

