
GNA
Data Analysis Framework for Neutrino Experiments

A. Fatkina M. Gonchar D. Naumov K. Treskov

JINR DLNP

The XXII International Scientific Conference of Young Scientists and
Specialists (AYSS-2018)

1 / 19



Outline

Introduction

GNA
Structure
General schema
Transformations
Computational graph
Features

Prospects and summary

2 / 19



Introduction

GNA (Glabal Neutrino Analysis) — flexible, extensible framework for the
data analysis of neutrino experiments.

GNA goals

I Data analysis for JUNO and Daya Bay experiments.

I Global analysis of neutrino data (experiments: Daya Bay, JUNO,

NOvA, etc.).

3 / 19



GNA Structure

Core

I Data

I Variable

I Transformation

Transformations
I Linear algebra

I Integration

I Statistics

I Physics

Bundles

I Read configuration.

I Variables.

I Small computational graph.

UI

I Comprehensive command line chain.

I Computational graphs.

I Analysis.

Python
(flexibility)

C++

(efficiency)

4 / 19



General schema

GNA
GNA

User Interface

PyRoot

Common code

PythonPython

C++C++

user

GNA schema.

5 / 19



User categories

Two categories of GNA user are

expected:

I End-user.

I Third-party transformation

writer.

user

6 / 19



User categories
End-user

I Assembles

computational chain by

binding blocks

(transformations) via

Python UI.

I Doesn’t need to think

how it works on a low

level.

GNA
GNA

User Interface

PyRoot

Common code

user

7 / 19



User categories
Third-party developer

I Implements algorithms
in C++.

I Implements interface in
Python, integrates it
into GNA environment.
Linking is provided on
the framework level.

I Assembles
computational chain by
binding blocks
(transformations) via
Python UI.

I Other programming
issues.

GNA
GNA

User Interface

PyRoot

Common code

user

8 / 19



Transformation

Transformation is an encapsulated
function, basic component of
computations.

Highlights

I May have zero or more inputs
and has at least one output.

I May depend on parameters
(variables).

I Data container is associated
with each transformation
output.

I Transformation has taint flag. It
is recomputed in case of it was
tainted only. Taint flag is true
when data is not up-to-date.

Transformation

Transformation

Transformation

Transformation

9 / 19



Computational graph
Schematic view

Transformations may be bound in arbitrary way.

T1

T2 T4 T5

T3 T8

T6 T7

An example with transformation of different types.

10 / 19



Computational graph

Highlights

I Outputs are usually arrays.

I Input is a view to output of other corresponding transformation.

I Transformation results are cached.

Two stages of computations:

1. Building the computational graph — occurs once:

I Check inputs types.

I Infer output types.

2. Evaluation on demand.

11 / 19



Computational graph
A part of JUNO graph

Enu

OscProb 0

OscProb 1
L₁

OscProb 2
L₁

OscProb 3
L₁

OscProb 1
L₂

OscProb 2
L₂

OscProb 3
L₂

OscProb 1
L₃

OscProb 2
L₃

OscProb 3
L₃

... ... ... ...

A part of JUNO computational graph. Oscillation probability with
different input parameters and single input vector with energy values.

12 / 19



Computational graph
The whole JUNO graph

Eres

Observed IBD:
AD1

osc prob:
AD1

rate hist:
comp12 at AD1

count rate:
comp12 at AD1

normed flux
comp12 at AD1

osc flux:
comp12 from group0

normed flux:
group0

unosc flux:
AD1

normed flux
comp0 at AD1

osc flux:
comp13 from group0

osc flux:
comp23 from group0

1: comp0

unosc IBD:
AD1

count rate:
comp0 at AD1

normed flux
comp13 at AD1

normed flux
comp23 at AD1

unoscillated hist:
AD1

IBD xsec

count rate:
comp13 at AD1

count rate:
comp23 at AD1

rate hist:
comp0 at AD1

rate hist:
comp13 at AD1

rate hist:
comp23 at AD1

normed flux:
DYB

1: comp0

osc flux:
comp23 from DYB

osc flux:
comp12 from DYB

osc flux:
comp13 from DYB

osc flux
comp0 at AD1

osc prob:
AD1

oscprob hist:
comp0 at AD1

osc prob:
AD1

oscprob hist:
comp12 at AD1

osc flux
comp12 at AD1

oscprob comp12
group0->AD1

osc prob:
AD1

oscprob comp13
group0->AD1

osc flux
comp13 at AD1

oscprob hist:
comp13 at AD1

jacobianoscprob comp23
group0->AD1

osc flux
comp23 at AD1

oscprob hist:
comp23 at AD1

oscprob comp23
DYB->AD1

oscprob comp12
DYB->AD1

Enu

spectrum:
Pu239 at group0

spectrum:
U238 at group0

spectrum:
U235 at group0

spectrum:
Pu241 at group0

spectrum:
Pu239 at DYB

spectrum:
U238 at DYB

spectrum:
U235 at DYB

spectrum:
Pu241 at DYB

oscprob comp12
HZ->AD1

oscprob comp13
HZ->AD1

oscprob comp13
DYB->AD1

oscprob comp23
HZ->AD1

spectrum:
Pu239 at HZ

spectrum:
U238 at HZ

spectrum:
U235 at HZ

spectrum:
Pu241 at HZ

flux
Pu239

flux
U238

flux
U235

flux
Pu241

flux
Pu239

flux
U238

flux
U235

flux
Pu241

flux
Pu239

flux
U238

flux
U235

flux
Pu241

norm:
group0 to AD1

fission frac:
Pu239 at group0

fission frac:
U238 at group0

fission frac:
U235 at group0

fission frac:
Pu241 at group0

livetime:
AD1

power:
group0

norm:
DYB to AD1

fission frac:
Pu239 at DYB

fission frac:
U238 at DYB

fission frac:
U235 at DYB

fission frac:
Pu241 at DYB

livetime:
AD1

power:
DYB

osc flux:
comp12 from HZ

osc prob:
AD1

normed flux:
HZ

1: comp0

osc flux:
comp13 from HZ

osc flux:
comp23 from HZ

norm:
HZ to AD1

fission frac:
Pu239 at HZ

fission frac:
U238 at HZ

fission frac:
U235 at HZ

fission frac:
Pu241 at HZ

livetime:
AD1

power:
HZ

Ee

integrator 2d

The graph contains 110 nodes and 174 edges. It produces a histogram of
240 bins.

13 / 19



Computational graph
Example of JUNO graph output

1 2 3 4 5 6 7 8 9 10

Evis, MeV

5000

0

5000

10000

15000

20000

25000

30000

35000

40000

N ∆
E

, 
M

e
V
−

1

NH
IH
NH-IH

Antineutrino spectra expected to be observed in JUNO experiment for
different mass hierarchies.

14 / 19



Features

Lazy evaluation
Computations are executed only in
case the value is used.

Caching
Transformation is computed once
and the result may be reused.

1 3

5

2 4

15 / 19



Features

Multithreading

I Transparent for the end-user.

I Is being developed now.

I Threads are created once.

I Prevent race conditions.

1 3

5

2 4

16 / 19



Features — CUDA support

I Transparent for the end-user GPU support.

I Separate library inside the framework.

I If you don’t need it — switch it off. No overhead will be produced.

H2D

GPU: T1 . . . Tk

CPU: T0 Tk+1

D2H

,,CUDA Support in GNA Data Analysis Framework“ (ICCSA 2018).
https://arxiv.org/abs/1804.07682

17 / 19

https://arxiv.org/abs/1804.07682


Features — CUDA support

I Provides a wrapper for data arrays with automatic data
management.

I Achieved x20 acceleration for oscillation probability transformation
(double precision values).

H2D

GPU: T1 . . . Tk

CPU: T0 Tk+1

D2H

,,CUDA Support in GNA Data Analysis Framework“ (ICCSA 2018).
https://arxiv.org/abs/1804.07682

17 / 19

https://arxiv.org/abs/1804.07682


Prospects and summary

The framework is being actively
developed now. Our plans include:

I Implementation of the Daya
Bay and NOvA oscillation
analysis.

I Multicore CPU + GPU systems
support.

I Porting the existing
transformations on the GPU.

I Unit-tests and general
documentation.

I Global analysis of neutrino data
produced by several
experiments.

Current status:

I Flexible framework for data
analysis of neutrino
experiments.

I May be extended by
user-defined transformations.

I The framework is used for the
JUNO sensitivity study by
several groups.

18 / 19



Thank you
for your attention!

Any questions?

19 / 19


	Introduction
	GNA
	Structure
	General schema
	Transformations
	Computational graph
	Features

	Prospects and summary

