

CMS emittance scans for luminosity calibration in 2017

Olena Karacheban, Peter Tsrunchev on behalf of CMS and BRIL

AYSS-2018: XXII International Scientific Conference of Young Scientists and Specialists 23-27 Apr 2018, Joint Institute for Nuclear Research (JINR), Dubna

Outline

Luminosity measurement and calibration
Luminometers of the CMS experiment
Van der Meer scan and emittance scans

- Nonlinearity and stability of the luminometers
- Bunch by bunch online emittance calculation
 - Web monitoring plots

Luminosity

- Luminosity (L) is a key quantity of any collider, which is used for physics cross section calculation.
- The uncertainty of the cross section measurement cannot be better than the uncertainty of the luminosity measurement.

3

• Luminosity is obtained from the observed rate in a detector (R) and calibration constant, called visible cross section (σ_{vis}): $L = R / \sigma_{vis}$.

Luminosity measurement

- Any detector, which can provide particles hit rates can be used as a luminometer.
- A luminometer with a linear response produces a signal that is proportional to the instantaneous luminosity.
- In CMS the following luminometers are used:
 - - Pixel Detector
 - - Forward calorimeter (HF)
 - - Fast Beam Conditions Monitor (BCM1F)
 - - Pixel Luminosity Telescope (PLT)

HF wedge

Luminosity calibration

• The Van der Meer scan method is used for LHC luminosity calibration.

- The proton beams are scanned through each other to determine the effective overlap of the beams at their point of collision and the visible cross section of the device.
- For reproducibility and detailed study of the systematic effects there is a special series of VdM scans once per year.

Visible cross section measurement

Analysis framework is used to fit beam overlap and to calculate $\sigma_{vis.}$ – the effective cross section seen by the luminometer:

$$\sigma_{vis} = \frac{2\pi\Sigma_x\Sigma_y}{N_1\cdot N_2\cdot f\cdot n_b}\cdot R_{peak}$$

where $\sum_{X} \sum_{Y} - \text{the beam}$ overlap widths obtained from the fit, N_1 , N_2 - number of protons in beams 1 and 2, f -LHC orbit frequency, n_b number of colliding bunches, R_{peak} - average rate at the peak in X and Y scans.

Emittance scan difference from VdM scan

- Emittance scans are short Van der Meer type scans performed at the beginning and at the end of LHC fills.
 - Beams are scanned in 7 displacement steps (19-25 steps in VdM);
 - 10 s per step (30 s per step in VdM);
 - The same beams as in physics data taking (in VdM fill special beam optics is used);
 - Filling scheme with 25 ns separated bunches, "bunch trains" (well separated bunches in VdM);
 - Single Gaussian fit is used to fit the emittance scan shape and to extract Peak and beam overlap in X and Y.

Data analyses

CMS XDAQ-based online application

Per bunch online analyses

8

Python-based

offline application

Emittance scans for nonlinearity measurement

- Due to spread of emittances in the bunch train and natural beam intensity drop towards the end of the fill wide **range of single bunch instantaneous luminosity (SBIL)** is covered in one fill.
- Difference in the SBIL allows nonlinearity study for each luminometer on a per fill bases.

Emittance scans for nonlinearity measurement

- The nonlinearity is different for leading and train bunches.
- For the measurement of the nonlinearity emittance scans at the beginning and at the end of the fill are used.
- Nonlinearity correction is applied per fill per detector for final luminosity measurement.

Emittance scans for stability measurement

- As emittance scans are performed regularly they became a powerful tool used to track the relative changes in the VdM calibration.
- \circ Any changes in $\sigma_{\rm vis}$ reflect changes of the detector state (e.g. nonefficiency) and therefore can be used to monitor detector stability.

Per bunch emittance calculation

- Bunches are colliding with a crossing angle between $110 \,\mu$ rad and $140 \,\mu$ rad at the interaction point of CMS.
- Using beam overlap regions measured by CMS from emittance scans emittance values are calculated as:

•
$$\varepsilon_x = [\Sigma_x^2 \gamma - 2\gamma \sigma_z^2 \sin^2(\alpha/2)] / [2\beta^* \cos^2(\alpha/2)],$$

• $\varepsilon_y = \Sigma_y^2 \gamma / 2\beta^*,$

where (α /2) crossing angle, γ relativistic factor, β * related to beam optics parameter (0.3 m in operation and 19 m in the VdM fill), $\sigma_{\rm Z}$ bunch length.

Web monitoring

- The emittance scans analyses is an important feedback to the LHC.
- Online monitoring pages are used for fast access and monitoring of emittance scans results.
- Effective beam overlap, $\sigma_{\rm yis}$ per detector, single bunch instantaneous luminosity, pileup, per bunch emittances are published in online regime for CMS and LHC.

Conclusion

- CMS emittance scans were run on a regular basis in 2017 at the beginning and at the end of fills.
- These short scans completed in 3 min and became a powerful tool for **luminosity** calibration, stability and nonlinearity monitoring.
- Bunch by bunch beam overlap and emittance measurement are important feedback to LHC.
- Two independent applications are used for analyzing emittance scans. They show a ~0.2% agreement and allow fast and easy access to analyzed data.