Results from the NA61/SHINE energy and system size scan program

Andrey Seryakov for the NA61/SHINE collaboration

Laboratory of Ultra-High Energy Physics

St. Petersburg State University

AYSS - 2018 26/4/18

	· • • • • • • •	
rev	Ser	(OV
 ,		

NA61/SHINE CERN

HADRON PRODUCTION IN H+P, H+A, A+A AT 13A - 150A (400) GEV/C

> ACCELERATION CHAIN H2 BEAMLINE DETECTOR

CERN Prévessin

S

Andrey Seryakov

MS

NA61/SHINE CERN

LUHEP SPbSU

2

NA61/SHINE experiment

- Large acceptance hadron spectrometer - coverage of the full forward hemisphere, down to $p_T = 0 \text{ GeV}/c$
- Performs measurements on hadron production in h+p, h+A, A+A at 13A – 150(8)A GeV/c
- Event selection in A+A collisions by measurements of forward energy with PSD
- Recent upgrades:
 - Vertex detector (open charm measurements)
 - FTPC-1/2/3

My first collaboration meeting

≈ 140 physicists14 countries28 institutions

Three main programs:

- Heavy ions physics
- Neutrino physics
- Cosmic ray physics

Andrey Seryakov

T2K: long baseline neutrino oscillation experiment

Neutrino program

NA61/SHINE → parameters of neutrino beams produced at J-PARC (Japan) and Fermilab (USA)

T2K replica target (90 cm)

p+C at 31 GeV/c

NA61/SHINE, measurements of $\pi \pm$, K \pm and proton yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS, submitted to Eur. Phys. J. C.

Andrey Seryakov

Neutrino program

NA61/SHINE → parameters of neutrino beams produced at J-PARC (Japan) and Fermilab (USA)

T2K replica target (90 cm)

p+C at 31 GeV/c

NA61/SHINE, measurements of π \pm , K \pm and proton yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS, submitted to Eur. Phys. J. C.

INE

Andrey Seryakov

NA61/SHINE CERN

7

Neutrino program

NA61/SHINE → parameters of neutrino beams produced at J-PARC (Japan) and Fermilab (USA)

T2K replica target (90 cm)

Systematic uncertainties of (anti) neutrino flux: $25\% \rightarrow 3-4\%$

NA61/SHINE, measurements of π \pm , K \pm and proton yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS, submitted to Eur. Phys. J. C.

Andrey Seryakov

NA61/SHINE CERN

Cosmic ray program

Andrey Seryakov

NA61/SHINE CERN

LUHEP SPbSU

9

Cosmic ray program

Pierre Auger Observatory

Muons at ground are mostly produced in π -air interactions at ~ 100 GeV, I.C.Maris, ICRC 2009₁₀

Andrey Seryakov

NA61/SHINE CERN

Measurements of hadron-nucleus interactions to improve modeling of cosmic ray showers.

NA61/SHINE Collab. Eur. Phys. J. C 77 (2017) 626 [arXiv:1705.08206]

Cosmic ray program

Measurements of hadron-nucleus interactions to improve modeling of cosmic ray showers.

Andrey Seryakov

NA61/SHINE CERN

Phases of water

Andrey Seryakov

Phases of water

Phases of strongly interacting matter

Phases of matter: Quark-Gluon Plasma

Andrey Seryakov

NA61/SHINE CERN

Heavy ion collisions

Andrey Seryakov

NA61/SHINE CERN

Heavy ion collisions

Andrey Seryakov

NA61/SHINE CERN

NA61/SHINE Heavy ion program:

- Study of the properties of the onset of deconfinement
- Search for the critical point
- Study of the onset of fireball

Beginning of creation of quark-gluon plasma in nucleus-nucleus collisions with increasing collision energy

Critical point

A hypothetical end point of the first order transition line

Search for the critical point in A+A collisions

A hypothetical end point of the first order transition line

beam momentum [A GeV/c]

Andrey Seryakov

A hypothetical end point of the first order transition line

beam momentum [A GeV/c]

Andrey Seryakov

Statistical Model of Early Stage: crossing the phase transition leads to a decrease of the strange/non-strange particle ratio - the horn-like structure

Statistical Model of Early Stage: crossing the phase transition leads to a decrease of the strange/non-strange particle ratio - the horn-like structure

Andrey Seryakov

Statistical Model of Early Stage: crossing the phase transition leads to a decrease of the strange/non-strange particle ratio - the horn-like structure

Andrey Seryakov

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;

PHSD model with & without Chiral Symmetry Restoration

- PHSD without CSR does not show the horn-like behavior.
- PHSD with CSR describes data!

31

Palmese et al., PRC94 (2016) 044912

Onset of deconfinement or **chiral symmetry restoration** (or both)?

We need more data! (manpower to analyze it)

Andrev	v Serv	vakov

Andrey Seryakov

NA61/SHINE CERN

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

For the models with independent particle sources (wounded nucleons model):

$$\omega[N] = \omega[n] + \bar{n}\omega[N_s]$$

where n is a multiplicity from a single source (wounded nucleon). Consequently $\omega[N]$ depends on the number of sources N_s fluctuations

Van der Waals EOS in GCE formulation

Strongly intensive fluctuation measures

Baseline of search for critical behavior: quantities with trivial properties in the reference models (e.g. WNM or IB-GCE)

$$\Delta[P_{T}, N] = \frac{1}{\omega[p_{T}]\langle N \rangle} \left(\langle N \rangle \omega[P_{T}] - \langle P_{T} \rangle \omega[N] \right)$$

$$\Sigma[P_{T}, N] = \frac{1}{\omega[p_{T}]\langle N \rangle} \left(\langle N \rangle \omega[P_{T}] + \langle P_{T} \rangle \omega[N] - 2cov(P_{T}, N) \right)$$

where $P_{T} = \sum_{i=1}^{N} p_{Ti}$
 \wedge - multiplicity of charged hadrons in an experimental acceptance
 $\omega[p_{T}]$ - scaled variance of inclusive p_{T} distribution

- Independent of $\Delta[P_T, N] = \Sigma[P_T, N] = 1$ for the independent particle production model
- $\Delta[P_T, N] = \Sigma[P_T, N] = 0$ in the absence of fluctuations

Gorenstein, Gazdzicki, PRC 84:014904 Gorenstein, et al., PRC 88 2:024907

Andrey Seryakov

N

Strongly intensive fluctuation measures

Sensitive to critical point

Van der Waals EOS in GCE formulation, E^* is excitation energy

Vovchenko, et all., arXiv:1610.01036v1 [nucl-th]

Analysis of strongly intensive fluctuation measures is expected to give more profound insight into the critical point location

Critical point search: fluctuation analysis

No prominent structures which could be related to the critical point are so far

E. Andronov, Acta Phys.Polon.Supp. 10 (2017) 449

Andrey Seryakov

NA61/SHINE CERN

LUHEP SPbSU

37

Beginning of creation of large cluster of strongly interacting matter in A+A collisions with increasing nuclei mass number.

A.Seryakov for NA61/SHINE, arXiv:1712.03014 [hep-ex] 39

NA61/SHINE CERN

Multiplicity fluctuation

Rapid change of A-dependence at A \approx 10 observed at all SPS collision energies

A.Seryakov for NA61/SHINE, arXiv:1712.03014 [hep-ex] 40

NA61/SHINE: Onset of fireball

Begun, et all., arXiv:nucl-th/0404056v1

- p+p and Be+Be contradict statistical models
- Ar+Sc and Pb+Pb contradict wounded nucleons model

Ar+Sc and Pb+Pb \approx large volume "statistical" cluster

ON INTERPRETATION OF ANSET OF FIREBALL.

PERCOLATION APPROACH

WITH INCREASING A DENSITY OF CLUSTERS (STRINGS, PARTONS,...) INCREASES. THUS PROBABILITY TO OVERLAP MANY ELEMENTARY CLUSTERS MAY RAPIDLY INCREASE WITH A - D PERCOLATION MODELS.

Baym, Physica **96A**: 131 Celik, Karsch, Satz PLB **97**: 128 Braun, Pajares, NPB **390**: 542 Armesto, *et al.*, PRL **77**: 3736 Cunqueiro, *et al.*, PRC **72**: 024907

ON INTERPRETATION OF ANSET OF FIREBALL.

Ads/CFT CORRESPONDENCE

MALDACENA, INT. J. THEOR. PHYS. 38 (1895) 1113

Ads (GRAVITY): FORMATION OF A BLACK HOLE HORIZON (INFORMATION TRAPPING SURFECE) TAKES PLACE WHEN CRITICAL VALUES OF MODEL PARAMETERS ARE REACHED

CFT (QCD): ONLY STARTING FROM A SUFFICIENTLY LARGE NUCLEAR MASS NUMBER THE FORMATION OF THE TRAPPING SURFACE IN ATA COLLISIONS IS POSSIBLE -> ONSET OF FIREBALL

E. Shuryak Prog. Part. Nucl. Phys. 62 (2009) 48–101, arXiv:0807.3033 [hep-ph] S. Lin and E. Shuryak Phys. Rev. D79 (2009) 124015, arXiv:0902.1508 [hep-th].

NA61/SHINE

The data taking program will be finished this year. What is next?

beam momentum [A GeV/c]

NA61/SHINE 2020+

Heavy ion program - open charm at SPS (2022-2024)

- What is the mechanism of charm production?
- How does the onset of deconfinement impact charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

Dedicated talk by Wojciech Brylinski on Wednesday

Upgrade:

- New hadron calorimeter (PSD)
- New TPC readout
- New DAQ and trigger systems
- New vertex detector (VD)
 T.Lazareva "Pixel detectors" on Wednesday

New cosmic rays and neutrino programs

Andrey Seryakov

NA61/SHINE CERN

Have a shiny day!

This work is supported by the Russian Science Foundation under grant 17-72-20045

Andrey Seryakov

NA61/SHINE CERN

Uniqueness of NA61 open charm program

Landscape of present and future heavy ion experiments

NA61/SHINE is able to measure open charm:

- in heavy ion collisions,
- in full phase space,
- in the near future.

- LHC and RHIC at high energies $(\sqrt{s_{\rm NN}} \ge 200 \text{ GeV})$: measurements in limited phase space due to collider geometry and kinematics
- RHIC BES (3 39 GeV): measurement not under consideration
- NICA (< 11 GeV): under consideration during stage 2
- J-PARC (< 6 GeV) : maybe possible after 2025
- FAIR SIS-100 (< 5 GeV): not possible at SIS-100, planned at SIS-300 (< 7 GeV)

NA61/SHINE acceptance

Ar+Sc 19A GeV/c

Ar+Sc 150A GeV/c

- Acceptance is different for different energies
- Acceptance is smaller for heavy ions

NA61/SHINE acceptance

NA49, PHYS. REV. C BZ (2013) 024902

Kaon to pion: comparison with models

https://doi.org/10.1016/j.ppnp.2011.05.001v

 $\sqrt{s_{NN}}$ [GeV]

System size dependence of strangeness production

- Ar+Sc placed in between light and heavy systems.
- Be+Be almost overlaps with p+p.

System size dependence of strangeness production - PHSD

- PHSD predicts increase of strangeness production with system size at low (<10 GeV) collision energies and decrease at high (>10 GeV) collision energies.
- PHSD predictions in disagreement with data at high energies.

5

Events selection

Event selection is based only on the forward energy related to projectile spectators

The forward energy consists of two components:

- spectators
- produced particles

Andrey Seryakov

NA61/SHINE CERN

• The measured energy allows selection of the "centrality classes"

Ar+Sc

For cross-sections look PoS CPOD2014 (2015) pp.053 58

NA61/SHINE CERN

A new strongly intensive quantity can be constructed:

$$\Omega[A, B] = \omega[A] - \frac{\langle AB \rangle - \langle A \rangle \langle B \rangle}{\langle B \rangle}$$

R. V. Poberezhnyuk, M. I. Gorenstein, M. Gazdzicki, arXiv:1509.06577v2 [hep-ph] 23 Sep 2015

and if A and B are uncorrelated from a single source ($\langle ab \rangle = \langle a \rangle \langle b \rangle$), then

$$\Omega[A,B] = \omega[a]$$

where $\omega[a]$ is scaled variance of A from a single source.

If A = N and $B = E_{beam} - E_{PSD} = E_P$, then $\Omega[N, E_P] = \omega[n]$

If a centrality interval is narrow enough, we can expect:

 $\Omega[N, E_P] \approx \omega[N]$

Andrey Seryakov

 $\Omega[N, E_P]$ almost does not depend on centrality – strongly intensive!

 $\Omega[N, E_P]$ and $\omega[N]$ converges to a common limit for very central events

Is this common limit $\omega[n]$?

ω[N] is significantly larger for
 inelastic p+p interactions and for
 the central Be+Be collisions
 than for central Ar+Sc collisions!

EPOS 1.99 describes p+p & Ar+Sc but fails in Be+Be

 ω [N] is significantly larger for inelastic p+p interactions and for the central Be+Be collisions than for central Ar+Sc collisions!

Why $\omega[N]$ in **central** Be+Be collisions is close to p+p value?

Why $\omega[N]$ is suppressed for central Ar+Sc (and Pb+Pb?) collisions in comparison to p+p and Be+Be?

Possible explanations:

• percolation models

Baym, Physica **96A**: 131 Celik, Karsch, Satz PLB **97**: 128 Braun, Pajares, NPB **390**: 542 Armesto, *et al.*, PRL **77**: 3736 Cunqueiro, *et al.*, PRC **72**: 024907

AdS/CFT correspondence

E. Shuryak Prog. Part. Nucl. Phys. 62 (2009) 48–101, arXiv:0807.3033 [hep-ph] S. Lin and E. Shuryak Phys. Rev. D79 (2009) 124015, arXiv:0902.1508 [hep-th].

• Anything else?

62