

BBC status report. Plans fo 2024.

V.P.Ladygin on the BBC SPD group

BBC group: VBLHEP: 7 +1 (HI simulation?) DLNP: (J.K., I.D.-simulation) MEPhI: about 10

SPD WG Hardware Meeting

15 February 2024

Introduction

General

The Beam-Beam Counters (BBC) for SPD

The main purpose of BBC is <u>the permanent</u> <u>monitoring of the beam polarization</u> using the azimuthal asymmetry of the inclusive charged particles yield

+ event plane detector for HI physics.

• Scintillator tiles part at the distance ~1.7 m

Introduction

TDR versions of BBC

TDR 2022

96 tiles

local polarimetry

TDR 2023

400 tiles

local polarimetry

Event plane determination

Simulation (pp)

New geometry and MF effect

Geometry in the SPDRoot

15-16 February 2024

The hardware of BBC tests part

Stands for BBC measurements

TRB-3 (10 ps)

Together with V.Chmil (JINR), S.Morozov, E.Usenko (INR)

The VME based DAQ

Isupov A.Yu. // EPJ Web Conf. 2019. V.10003. P.204

CAEN FERS 5200

External trigger by coincidence of two scintillators with PMTs readout

The hardware of BBC tests part

CAEN FERS-5200 readout system

FERS-5200 is an extendable high speed front-end readout system based on the **DT5202 64channel module** for SiPM.

Concentrator **DT5215** for the possibility of expanding the number of channels to 8192.

Fine for testbeam and Phase0 experiments.

Citiroc 1A allows triggering down to 1/3 p.e. and provides the charge measurement with a **good noise rejection**. Moreover, Citiroc 1A outputs the 32-channel triggers with a **high resolution timing** (better than 100 ps).

Each channel has low **(LG)** and high **(HG)** gain preamplifiers providing a wide dynamic range.

Main Acquisition Modes:

- SPECTROSCOPY.
- TIMING. SPECT_TIMING. The Spectroscopy + Timing

2023 results

Tile height 55.7 mm 25 tiles in sector (similar to STAR EPD)

Proposal for prototype BBC design

The BBC prototype options:

CAEN FERS-5200 readout system

the sets of 7-tiles scintillator (thickness 10 mm)

prototypes were produced by Uniplast (Vladimir)

- 6 sets with chemical mating
- 6 sets polished (Tyvek covered)

 \succ scintillation optical fibers (WLS and clear)

- KURARAY
- Saint-Gobain Crystals

➢optical cements

- CKTN Med E
- OK-72

SENSL SiPMs (MicroFC-x0035-SMT)

• 1x1 mm²

2023 results

Scintillation detector prototype materials

Line 3 (L;R) 2 (L;R)

1 (L;R)

central

Materials selection (scintillator, optical cement, fibers, etc) and prototype tiles testing with material combinations.

Scintillator:	Matte vs Tyvek covered					
	,	Table 1. Optical cements and their parameters				
		Brand	Viscosity,	Operating	Spectral	Refractive
Optical cement:	CKTN Med vs OK-72		cPs	temperature	characteristics	index
				range		
Fibers:	Saint-Gobain Crystals (SG91AS, SG92S)	EJ-500	800	From -65	60-95% at	1.574
					300-350 nm	
				to +105 °C	95-100% at	
	VS				350-600 nm	
		CKTN MED	$15 \cdot 10^{3}$	—	92-96%	1.606
	KURARAY (Y-11)	Mark E			500 nm	
		OK-72	_	From -60	99% at	1.587
SiDMe	SENSI $1x1 \text{ mm}^2$ (main ontion 2022)			to +60 °C	400 -2 700 nm	
		•	•	•	•	

Material selection: Cover and WLS

Scintillator cover: **matted** vs Tyvek

Due to the higher peak position (from 7% and up to 15%) as well as the comparative simplicity in the context of mass production, the option with matted ones is more appropriate.

Due to the fact that Kuraray Y-11 fiber collects more light these fibers looks more appropriate for our detector

Into TDR

Material selection: Optical cement

Study: OK-72 70/30 (blue), 76.24/23.66 (yellow) and 80/20 (red) compositions comparison On the right: Light collection peak position in dependence of A component amount for optical cement. Same for CKTN, using 2.5 (blue), 3.2 (green), 3.6 (red) of A to 100 B.

Material selection: Optical cement

Row 2

1x1 mm² SMTPA SiPM

Vbias~27,37V calibration for all

- Отсутствие влияния SiPMs
- Минимальное различие сигнала для различного волокна (при ОК-72)
- 25% различие сигнала для различного волокна (при CKTN)

Material selection: Optical cement

Fit Params	CKTN	OK-72
Mean, Channels	389.6	202.6

Reason, why we still looking for the answer:

CKTN MED type E - Light collection ✓ Convenience in mass production ×

OK-72 - Light collection ★ Convenience in mass production ✔

28.01.2024 Samples:

Comparison of row 2 tiles with SGC BCF92 and CKTN (red) VS OK-72 (blue) There is a possibility that we will test a compromise variant – CKTN MED Type A - same light collection (as stated in the data sheet), but the viscosity is reduced by 10-100 times. Curing time might also increase

Material selection: Amount of fiber rows

Number of REG photons 1000 events

For more details, see

https://indico.particle.mephi.ru/event/389/con tributions/3829/attachments/2283/4212/-12--.pdf

Fit Params	1 row	3 rows
Mean, Channels	86.7	202.6

Experimental data: Light collection of second row tiles with SG BCF92 and OK-72, but: 1 (blue) and 3 (red) rows of WLS fiber, starting from the same depth

Correlations and timing

FERS DT5202 working options

ToT for the freestreaming mode of DAQ

- **1.** New geometry of the outer part of BBC is defined.
- 2. Scintillators manufacturer is selected (Uniplast-Vladimir).
- **3. Scintillator cover and WLS types are selected.**
- 4. FEE and digitizer option for Phase0 and Phase1 (possibly) is selected.
- 5. Software for the data analysis and simulation is developed.

To do:

1. Optical cement studies- several tiles with CKTN MED type A:	March
2. Design of the carbon (sandwich type) support:	May
3. 2 7-tiles prototypes design, manufacture and testing:	July
4. Design of the transmission (optic cable -SiPMs-el.cable) box	October
5. Design of the optical cable&connectors	Octobe
6. Tests with S14160-1315PS Hamamatsu SiPMs 1.3x1.3 mm ²	Octobe

It is almost fully secured

Plans 2024

7-8 tiles prototype

Prototypes for NICA

Plans 2024

0

45

Conclusions

- I. The R&D phase for the scintillation tiles is almost finished. Tests with new optical cement will be performed in March-April.
- II. The main task for 2024 is to produce and to test the 7-8 tiles prototypes.
- III. The manufacture of 2 small BBC wheels (128 tiles each) for SPD-Phase_0 is planned for the end of 2024.

Risks 2024-2025:

FERS5200 CAEN availability. We have only 3 DT5202 boards.

Radiation conditions for HI collisions. Simulation for beam pipe& small BBCs& Bi+Bi is required.

Risks >2024:

New electronics (localized in RF) is needed: FEE, digitization, L1.

Backup

The first steps at the work with FERS and tiles tests

The amplitude histograms for both SiPM sizes with the chosen voltage are shown. This is not a bad result, but we preferred **another the way of calibration**.

CKTN Med and OK-72 difference

Tests at Lab201- VBLHEP

Hexagonal granularity detector

Together with **E.R. Rozas-Calderon (CTEPP-UNAB)**

Saint-Gobain Crystals vs KURARAY fibers difference. (CKTN optical cement)

Saint-Gobain Crystals fibers

Specific Properties of Standard Formulations								
Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV**				
BCF-10	blue	432	2.7	~8000				
BCF-12	blue	435	3.2	~8000				
BCF-20	green	492	2.7	~8000				
BCF-60	green	530	7	~7100				
BCF-91A	green	494	12	n/a				
BCF-92	green	492	2.7	n/a				
BCF-98	n/a	n/a	n/a	n/a				

KURARAY fibers

Description	Emission			Absorption	Att Long 2	
	Color	Spectra	Peak[nm]	Peak[nm]	[m]	Characteristics
Y-7(100)	green		490	439	>2.8	Blue to Green Shifter
Y-8(100)	green	1	511	455	>3.0	Blue to Green Shifter
Y-11(200)	green	See the	476	430	>3.5	Blue to Green Shifter (K-27 formulation) Long Attenuation Length and High Light Yield
B-2(200)	blue	figure	437	375	>3.5	UV to Blue shifter
B-3(200)	blue		450	351	>4.0	UV to Blue shifter

Kuraray Y-11 fiber collects more photons.

Matte and Tyvek tiles (CKTN, SG92S)

Trigger time resolution ~650 ps

The result of comparison 1 and 3 line tiles. For Tyvek covered and matted tiles gives the same results.

Fibers bending loss

Calibration method (Led source)

Thank you for the attention!

Introduction

MCP part

2-new high granularity detectors placed at about +/-4.5m from IP outside the beampipe. Option with the detector inside the beampipe is cancelled.

-MCP based TOPAZ PMTs

-Good time resolution 50ps

-Tests with laser and with 200 MeV electrons (LINAC-200) has been performed.

-Tests in SPD testzone and at ITS at Nuclotron are under preparation -Combined detector (MCP+ Scintillators) for small angle scattering monitoring and physics

Team A.Baldin et al.(JINR) G.Feofilov et al. (StPSU) A.Kubankin et al. (BNRU)

The first step of high granularity part of BBC development

DOI:10.1134/S1063778822090381 (2022)

Phys.Atom.Nucl.

The VME based DAQ

Isupov A.Yu. // EPJ Web Conf. 2019. V.10003. P.204

Yu.Gurchin, A.Isupov, V.Ladygin, S.Reznikov, A.Terekhin, I.Volkov (JINR)

CAEN Digitizer DT5742 (16+1 Channel 12 bit 5 GS/s)

Simulation (pp)

Z.Kurmanaliyev

Simulation (pp)

FTF and Py8 generators

The pp-elastic scattering events have been selected for total energies equal 6.2, 10 and 23.5 GeV. The events rates as function from the angle scattering have been estimated for pp-elastic scattering by using the FTF and Pv8 generators at Luminosity 10³⁰ cm⁻²s⁻¹ for 1/16 part of BBC.

Z.Kurmanaliyev (JINR)
A.Terekhin (JINR)
(see talk at this meeting)

The Time-over-Threshold (ToT) method

The ToT is a well-known method which allows to measure the energy deposited in the material.

Extracting correction parameters FEE ToT (version Nº1)

3

The time difference histogram FEE ToT (version №1)

A.V. Tishevskiy et al., J.Phys.Conf.Ser, V.1690, 012051 (2020)

The time difference histogram FEE ToT (version 03)

Channels (25 ps)

Counts

Counts

Counts

1000

1000

2000

3000

4000

5000

Channels, 25 ps

6000

ToT Entries 822838 3000 00008 ts 00007 ts 2307 Mean 2500 RMS 841.6 Ũ 2000 1500 **v.1** 1000 500 Channels, 25 ps Entries 321106 4500 Counts 4228 Mean 4000 3500 RMS 417 3000 2500 **v.2** 2000 1500 1000E 500F 3500 4500 5000 5500 6000 4000 Channels, 25 ps Counts Entries 638006 9000 Mean 3923 8000 RMS 1267 7000 30000 6000 25000 5000 **v.3** 20000 4000 15000 3000 10000 2000

Comparison of FEE ToT versions

Corrected dT(SiPM1-SiPM2)

Constant 4.091e+04 ± 6.325e+01

Mean

5000

700

Sigma

800

1100

1000

 1058 ± 0.0

6.157 ± 0.006

~150 ps

900

The time difference histogram for FEE DANSS

Phys.Atom.Nucl., DOI:10.1134/S1063778822090381 (2022)

CAEN digitizer DT5742 (16ch)

16+1 Channel 12 bit 5 GS/s Switched Capacitor Digitizer

based on the DRS4 a Switched Capacitor Array. This technology relies on a set of capacitors that continuously sample the analog input signals. As soon as the trigger is issued, capacitors are decoupled from the input signals with a time interval from each other that is the sampling period.

- Hamamatsu SiPM (S12572-010P)
- FEE of DANSS experiment


```
// File Format Version 3.1
// Janus Release 2.2.10
// Acquisition Mode: Spect_Timing
// Energy Histogram Channels: 4096
// ToA/ToT_LSB: 0.5 ns
```

// Run start time: Thu May 12 12:34:25 2022 UTC

Tstamp_us	TrgID	Brd	Ch	LG	HG	ToA ns	ToT ns
2.880	0	00	00	39	39	_	_
		00	01	36	35	-	-
		00	02	36	20	919.0	8.0
		00	03	42	55	-	-
		00	04	30	9	-	-
		00	05	40	41	_	
		00	06	36	12	-	-
		00	07	38	69	-	-
		00	08	33	13	-	-
		00	09	31	32766	955.0	5.5
		00	10	38	160	140.0	14.0
		00	11	37	282	74.0	20.0
		00	12	45	141	-	-
		00	13	105	785	71.0	28.0
		00	14	35	14	-	-
		00	15	105	768	71.0	28.5
		00	16	35	69	_	_
		00	17	36	101	855.0	8.5
		00	18	38	100	-	-
		00	19	117	861	71.0	29.5
		00	20	35	32	=	-
		00	21	44	236	83.5	8.5
		00	22	38	25	-	-
		00	23	57	240	83.0	9.0
		00	24	36	32767	-	-
		00	25	32	12	-	-
		00	26	39	53	-	_
		00	27	33	49	-	-

Fig. 3.36: Event List example in Spectroscopy + Timing Mode (Ascii format), where ToA and ToT are expressed in ns.

Tests at Lab201- VBLHEP

SAPHIR-UNAB and Cinvestav Teams

Light from prototype (BC404) is detected by four SiPM (B1-B4)

Different Vbias were explored (55.5, 56.5, 57.5, 58.5, 59.5, 60.5 V).

DAQ based on **(16 ch) CAEN** digitizer DT5742 was launched

Hamamatsu SiPM (S13360-3050CS, 3x3 mm², 50 µm/cell)

The prototype (in blue) was placed below the trigger counters (in yellow), which provided the start signal for data readout. Each trigger counter was made of a BC404 scintillator plate (10x10x2 cm³) and one Hamamatsu (H5783) PMT (A1, A2).

MILLENNIUM INSTITUTE FOR SUBATOMIC PHYSICS AT HIGH-ENERGY FRONTIER SAPHIR

Together with M.A. Ayala-Torres (SAPHIR-UNAB)

