
(Improving) HLT using SONIC

1

Maria Acosta, Yongbin Feng, Lindsey Gray, Burt Holzman, Kevin Pedro, Nhan Tran (Fermilab)

Phil Harris, Jeff Krupa, Patrick McCormack, Simon Rothman (MIT)

Mia Liu, Dmitry Kondratyev, Stefan Piperov, Yao Yao (Purdue)

Javier Duarte (UCSD)

Kelci Mohrman, Philip Chang (Florida)

CMS Machine Learning Forum

February 6th, 2024

(Brief) History

2

• Most of the SONIC-HLT studies included here were done in 2021-2022, before the beginning of Run-3 data
taking:

✤ At that time we already had a demo of running the HLT workflow with Patatrack (and some ML algorithm) as a
service on 2018 EphemeralHLTPhysics dataset, and we found this could increase the GPU utilization and potentially
save GPU resources while getting consistent results as “direct inference”

✤ Results reported and discussed in the S&C Blueprint meeting on March 9th, 2022: Indico, Slides

✤ Then efforts on HLT were paused for a while, since the Run-3 configuration was supposed to be frozen. Also
received suggestion to focus on the offline studies first

✤ Main focus was on MLG-23-001 “Portable Acceleration of CMS Computing Workflows with Coprocessors as a
Service”, with studies on ML inference for offline acceleration demonstration. Paper expected to be submitted
soon.

✤ Plan to shift the focus back to HLT and continue the developments and tests

https://indico.cern.ch/event/1136920/#6-sonic-rd-and-strategies-towa
https://indico.cern.ch/event/1136920/contributions/4770166/attachments/2405107/4114057/Updates_SONICHLT_March9.pdf
https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=MLG-23-001&tp=an&id=2658&ancode=MLG-23-001

Goal

3

• Despite being primarily discussed in the Machine Learning Group, SONIC is general and can be applied to
accelerate classical domain algorithms as well, for online/offline computing and different workflows

• We (SONIC team) would like to contribute to HLT developments, especially on the Next Generation Trigger
study of “Towards a distributed HLT architecture”.

✤ We have accumulated plenty of technologies and experience from the offline studies with machine learning
algorithms

✤ We have a workflow that can run the HLT with Patatrack as a service and have tested against other workflows

✤ Link to the previous code and workflow: here. (Some of these are not synchronized with the latest developments,
which is expected to be done soon.)

✤ SONIC@HLT can be one candidate for the next MLG paper MLG-24-00X (online) as a continuation of
MLG-23-001 (offline)

• Slide 4 - 13 are mostly recycling the material two years ago. Plan to continue the developments now.

https://github.com/yongbinfeng/TritonCBE/tree/main/TestIdentity

Run-3 HLT Farm Setup

4

…

PCIe
• Heterogenous system:

✤ 2 x AMD EPYC 7763 (2x64 physical cores/2x64x2
hyperthreads) directly connected to 2 NVIDIA Tesla
T4

• Offloads Patatrack + ECAL Multifits + HCAL MAHI
Reco from CPU to GPU, reducing the HLT CPU
processing time and increasing throughput by around
25-30%

1 HLT Node

2 AMD EPYC 7763 CPUs
(2x64 physical cores;
2x64x2 hyperthreads)

2 NVIDIA Telsa T4 GPUs

If with SONIC

5

• Build servers using the HLT GPUs and run
Patrack + ECAL Multifits + HCAL MAHI
Reco as a service on the HLT

• One GPU server can serve more than 1
AMD EPYC 7763 CPU; the extra saved
GPUs can be used to serve other HLT
nodes or used for e.g., Offline computing

✤ More efficient utilizations of existing
computing resources

…

Network

1 HLT Node

Server (Triton)

Server (Triton)

Conneted and used for
Other GPU nodes/Offline Computing

Benefits with SONIC
• Many benefits of running inference aaS with SONIC, e.g.:

✤ One coprocessor can serve many CPU clients; one CPU client
can communicate with multiple coprocessors; easy to change -
more degrees of freedom efficient and sufficient utilization of
coprocessors

✤ Factorize the ML and Coprocessor framework (TensorFlow,
PyTorch, ONNX, Scikit-Learn, XGBoost, CUDA, Alpaka etc)
out of clients (CMSSW), which only needs to handle the I/O
conversions on the client side - easy support for different (ML)
frameworks, models

✤ Simple support for different coprocessors. No need to rewrite
algorithms in coprocessor-specific languages - Easily Portable

✤ Access to remote coprocessor resources.

What we’ve done & tested with HLT

7

• Ported domain algorithm Patatrack code into Triton Custom backend and can run Patatrack as-a-service

✤ Start with pixeltrack-standalone and build the Patatrack custom backend. Recipe here. Synced with CMSSW_12_3_0_pre4.
Outputs (e.g., tracks and vertices) are almost identical

✤ Test at Purdue on the 2018 EphemeralHLTPhysics dataset: one GPU server can serve at least two AMD EPYC 7702 (2x64
physical cores) without any performance drop

• Developed ML-based HCAL reconstruction algorithm FACILE and run it as-a-service.

✤ A candidate replacement of HCAL MAHI reco

✤ A small size Tensorflow model. Easy to train and deploy. Better or equivalent performance than MAHI

✤ Test at Purdue on the Run-3 ttbar RelVar dataset: one GPU server can serve at least two AMD EPYC 7702 (2x64 physical
cores) without any performance drop

https://github.com/yongbinfeng/pixeltrack-standalone/tree/21.02_phil_asynch_12_3_X_port
https://github.com/yongbinfeng/identity_backend/tree/21.02_phil_asynch_12_3_X_port/src
https://github.com/yongbinfeng/TritonCBE/tree/main/TestIdentity

• Benchmark the Patatrack on GPU performance at
Purdue (2xAMD7703 + 1 Tesla T4 GPU), using the
2018 EphemeralHLTPhysics dataset and the HLT config
from the timing twiki

✤ Patatrack + MAHI + ECAL directly on GPU together
reduces the CPU latency by around 23%;

✤ Patatrack alone reduces the latency by around 9%

• Running on 2018 EphemeralHLTPhysics dataset, directly
running on GPU tend to require a lot of GPU memory
(more than around 1GB per 4-thread job).

✤ Can only do 16x4 jobs at the moment because of the
limited memory on T4 (16GB)

✤ GPU utilization is around 50-60%. Seems not sufficiently
utilized

Patatrack Performance

8

Latency
[ms]

CPU GPU Reduction

Total 340 265 75

Patatrack 42 11.1 30

MAHI 37 1.6 35

ECAL 14 1.8 12

https://twiki.cern.ch/twiki/bin/viewauth/CMS/HLTCpuTimingReports2022

• Start from pixeltrack-standalone to avoid dealing with the enormous amount of libraries in CMSSW. Full Recipe here

✤ Reuse more than 90% of the code in pixeltrack-standalone; plus some extra Triton backend code to control the IOs

✤ For longer term, still an option to explore compiling together with CMSSW to be more maintainable

Patatrack Custom Backend

9

Gains Geometry CPE

FedRaw

BeamSpot

Binary files
preloaded into
Patatrack custom
backend

Input: 80KB/evt

Digis/Clusters RecHit Triplets/Tracking Vertexing Patatrack
custom
backend

Digi(Errors)
SoA RecHitsSoA TracksSoA VertexSoA Output: 2MB/evt

cablingMapfedIds

https://github.com/yongbinfeng/pixeltrack-standalone/tree/21.02_phil_asynch_12_3_X_port
https://github.com/yongbinfeng/TritonCBE/tree/main/TestIdentity
https://github.com/yongbinfeng/identity_backend/blob/21.02_phil_asynch_12_3_X_port/src/identity.cc#L723

• A Patatrack SONIC Producer to handle the IOs on the client (CMSSW) side. Running asynchronously.

• Inputs are FedRaw data and beamspot information (<100KB/evt) .

• Outputs are Digis + Rechits + Tracks + Vertices. All zero-suppressed to reduce the output size. About 2MB/
evt after zero suppression. (Without zero-suppreson the output would be 8MB/s)

• Comparing the AAS with directly running Patatrack in CMSSW - results (tracks and vertices) and output
trigger flags are almost identical

Patatrack as-a-Service

10

HLT
Module1

HLT
Module2

Patatrack
SONIC Producer

Server (Triton)
on T4 with
Patatrack-AAS

HLT
Module3 HLT

Module4

FedRaw +
BeamSpot

Digis +
Rechits +
Tracks +
Vertices

Async

https://github.com/yongbinfeng/cmssw/blob/PatatrackAAS_12_3_0_pre4/RecoBTag/ONNXRuntime/plugins/PatatrackSonicProducer.cc#L87-L244

• Table shows the results of testing Patatrack standalone

• The throughput with PatatrackAAS from Triton Perf Client is around 400-500 evts/s

• Running exclusiving Patatrack-aaS on one server. The throughout improvements with PatatrackAAS is expected -
around 10%. One GPU running PatatrackAAS can serve at least 124 physical CPU cores

✤ Need about 3 CPU cores for the server; GPU utilization is around 60% with 124 CPU cores.

• One Patatrack-AAS server with one T4 GPU can probably serve up to ~180-200 CPU cores. The remaining GPUs can
be saved and used for other purposes

Patatrack as-a-Service Performance

11

Throughput
[evts/s]

1 thread 10 threads

Patatrack 660 930

+ CPU/GPU
Transfer

440 870

+ zero
suppression

400 820

FACILE Performance On Run3 RelVar

12

Latency CPU GPU Reduction AAS (Patatrack +
Facile) + ECalGPU

Reduction

Total 1560 1450 120

Patatrack 80 32 50 31 50

MAHI 54 2.0 52 11 43

ECAL 27 3.0 24 3.0 24

• With ttbar relval samples, the Run-3 workflow. Running 31 4-thread jobs at Purdue (124 physical cores) with
Patatrack + FACILE aaS and ECALGPU directly connected.

• The latency of these three processes are pretty consistent. For ttbar sample, one GPU serving Patatrack + Facile
as-a-Service can serve at least 124 physical cores

Summary

13

• Ported Patatrack code into Triton Custom backend and can run Patatrack as-a-service

✤ Test at Purdue on the 2018 EphemeralHLTPhysics dataset: one GPU server running PatatrackAAS can serve at
least two AMD EPYC 7702 (2x64 physical cores) without any performance decrease.

✤ Can port MAHI and ECAL GPU algorithms into AAS as well if needed

• Developed DNN-based HCAL reconstruction algorithm FACILE and run it as-a-service.

✤ Test at Purdue on the Run-3 ttbar RelVar dataset: one GPU server can serve at least two AMD EPYC 7702
(2x64 physical cores) without any performance drop

• Running HLT as-a-Service can make more efficient usage of the HLT resources and allow us to explore wider
usage

Plans

14

• Plan to continue the HLT studies with SONIC for optimizing resources at HLT. Work on e.g.:

✤ Sync the code with the latest setup; compile Alpaka into the backend, etc

✤ Work on a Centos/Alma-9 based server and explore using code and libraries directly from CMSSW

✤ Automate the custom backend server creation for any GPU algorithm in CMSSW

• SONIC is not limited to ML. We would like to contribute to the HLT developments (and the Next
Generation Trigger project)

Back Up

15

Overview: SONIC in CMSSW

16

• Client side: CMSSW

✤ SonicCore (repo) + SonicTriton (repo): includes different modules (EDProducer, EDFilter,
EDAnalyzer); provides synchronous and asynchronous modes for clients

• Server side: NVIDIA Triton Inference Server (webpage, repo)

✤ It supports numerous ML backends (TensorFlow, TensorRT, PyTorch, ONNX, Scikit-Learn,
XGBoost, etc) and custom backends for e.g., non-ML algorithms (python, cpp, CUDA, etc)

✤ Many attractive features including:

➡ Dynamic batching: accumulate requests from multiple events and process together to
increase inference throughputs; transparent to clients

➡ Concurrent model execution + Multi-GPU load balancing: one GPU can serve multiple
models; one model can be served on multiple GPUs with load balancing

➡ Model pipelines: model ensembles form a pipeline of some models, connect input and
output tensors in between

https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/triton-inference-server/server

Results on 2018 Data

17

Latency [ms] CPU GPU Reduction

Total 570 440 130

Patatrack 73 17 56

HCAL
(MAHI)

61 2.8 58

ECAL 23.5 2.8 20

• Run the HLT workflow with CMSSW_12_3_0_pre4 and the 2018 raw data, following the similar steps as th
HLTTimingReport.

✤ Left is running without hyperthreading

✤ Right is running with hyperthreading

• Trigger results are basically the same between these two, with very minor differences. Latency reduction about
25%.

✤ Results in the HLT node tests were 614ms and 466ms respectively.

Latency
[ms]

CPU GPU Reduction

Total 340 265 75

Patatrack 42 11.1 30

MAHI 37 1.6 35

ECAL 14 1.8 12

https://twiki.cern.ch/twiki/bin/viewauth/CMS/HLTCpuTimingReports2022
https://tloesche.web.cern.ch/tloesche/piecharts/web/piechart.php?local=false&dataset=cmssw_12_3_0_pre4_v23_cpu&resource=time_real&colours=default&groups=hlt&threshold=0
https://tloesche.web.cern.ch/tloesche/piecharts/web/piechart.php?local=false&dataset=cmssw_12_3_0_pre4_v23_gpu&resource=time_real&colours=default&groups=hlt&threshold=0

Results on ttbar RelVal Sample

18

Latency CPU GPU Reduction AAS (Patatrack +
Facile) + ECalGPU

Reduction

Total 1560 1450 120 1550 10(?)

Patatrack 80 32 50 31 50

MAHI 54 2.0 52 11 43

ECAL 27 3.0 24 3.0 24

• With ttbar relval samples, the Run-3 workflow, and CMSSW_12_0_1. Running 31 4-thread jobs at Purdue
(128cores with hyperthreading disabled).

• Patatrack CPU and GPU produces some different trigger flags; the latency of the other modules are changed,
causing the total timing to be different. But the latency of these three processes are pretty consistent. Can further
check and validate this in CMSSW_12_3_0_pre4

Results on ttbar RelVal Sample

19

GPU utilization 16 4-thread jobs 31 4-thread jobs

Patatrack 5-10% 10-20%

Patatrack + MAHI 20% 30-40%

Patatrack + MAHI
+ ECAL

30-40% 60%

• With ttbar RelVar sample, running 31 4-thread jobs with Patatrack + MAHI + ECALGPU offloaded the GPU, the
GPU utilization is around 60%

• The server CPU utilization is around 160% running 31 4-threaded Patatrack + FACILE jobs

• Server supports 31 4-thread jobs well, with Patatrack + Facile aaS and ECAL running on local GPU

• Study and optimize the server side CPU usage

Server CPU
utilization

16 4-thread jobs 31 4-thread jobs

Patatrack 30% 60%

Patatrack + Facile 80% 160%

PatatrackGPU

20

• Out of the 33ms total latency:

✤ SiPixelDigisClustersFromSoA: 21.5ms. (Convert the
pixel digis and clusters to legacy format.

✤ SiPixelClusterShapeCacheProducer: 5ms (also exists
in the legacy CPU workflow)

✤ Data transfer from GPU to host takes about 2ms in
total

Results on 2018 Data: CPU

21

• Running on 2018 data
with hyperthreading
enabled

Results on 2018 Data: CPU

22

• Running on 2018 data
with hyperthreading
disabled

Results on 2018 Data: GPU

23

• Running on 2018 data
with hyperthreading
enabled

Results on 2018 Data: GPU

24

• Running on 2018 data
with hyperthreading
disenabled

