New Tracker Alignment Prompt Calibration Loop CMS week

Valeria Botta, Danilo Meuser, Marco Musich, **Philipp Nattland**, Marius Teroerde on behalf of the CMS Tracker Alignment group

I. Institute of Physics B, RWTH Aachen University

February 7th, 2024

Track-based Alignment

- Determine orientation, position and surface deformation of CMS tracker sensors
- **Goal:** Alignment precision σ_{align} of same scale as hit resolution $\sim \mathcal{O}(10\,\mu\text{m})$
- After mechanical alignment: $\sigma_{\text{align}} \sim \mathcal{O}(100 \, \mu\text{m})$
- $\Rightarrow\,$ With track-based alignment $\sigma_{\rm align}\,\sim\,\mathcal{O}(10\,\mu{\rm m})$

- ----- charged particle
 - fitted trajectory
 - predicted hit
 - measured hit
 - residual

Aligned modules

Summary

PCL Alignment

 d_{z} vs η Bias

Inclusion of Z $\rightarrow \mu \mu$

Track-based Alignment

$$\chi^2(\boldsymbol{p},\boldsymbol{q}) = \sum_j^{\text{tracks}} \sum_i^{\text{hits}} \left(\frac{m_{ij} - f_{ij}(\boldsymbol{p},\boldsymbol{q_j})}{\sigma_{ij}}\right)^2$$

 $m_{ij},\ f_{ij}$: measured and predicted hit position

 $oldsymbol{p},\ oldsymbol{q}$: alignment and track parameters

PCL Alignment

 d_z vs η Bias

Inclusion of $Z \rightarrow \mu \mu$

Validation

Summary

2/14

Run 2: Low Granularity PCL alignment

- Alignment of large structures (HLS) of the pixel detector (\Rightarrow LG)
 - 2 BPIX barrels, 4 FPIX half-cylinders, 6 dof per structure \rightarrow $6 \times 6 = 36$ parameters
- MillePede 2 algorithm runs in the Prompt Calibration Loop (PCL) at Tier-0
- Uses express MinBias data
- Alignment automatically updated, if movements within set requirements
- Due to LG cannot account for some effect, e.g. radiation damage

Run 3: High Granularity PCL alignment

- Change from HLS-based to ladder/panel-based alignment
 - \Rightarrow Increase number of parameters from 36 to ~ 5000
- Improved performance wrt LG PCL alignment
- But: More parameters \Rightarrow Cannot be fully constrained by MinBias data set

High Granularity PCL Bias: $\cos \phi_{\rm 3D}$

- cos φ_{3D}: Cosine of angle between direction of the SV wrt PV and the direction of the di-leptons system
 - \Rightarrow Expected to be symmetrical for DY
- Used in analyses with dimuon SV to reduce combinatorial background

High Granularity PCL Bias: $d_z \text{ vs } \eta$

PV validation

- PV reconstruction driven by pixel detector
- Validation: Redetermine PV without track of interest
- *d_z*: Longitudinal distance between track and redetermined PV
- Expect distribution of mean d_z vs track η to be flat

- $\Rightarrow\,$ Introduction of bias, probably correlated with $\cos\phi_{\rm 3D}$ bias
- $\Rightarrow~{\rm Try}$ to reduce bias by inclusion of ${\rm Z} \rightarrow \mu \mu$ data

Inclusion of $\mathsf{Z} \to \mu \mu : \ d_z \text{ vs } \eta$

Validation Strategy

- Run Pseudo-PCL alignment on run that shows prominent d_z vs η bias in prompt reco, using
 - 1. Only MinBias data (standard)
 - 2. MinBias and Z $ightarrow \mu\mu$ data
- $\label{eq:But: constraint} \begin{array}{l} {\rm But: \ } \sim {\rm 20 \ times \ more \ MinBias \ than \ Z \rightarrow \mu\mu \ tracks \end{array}$
 - ⇒ Introduce weighting factor of $Z \rightarrow \mu \mu$ tracks in alignment procedure
 - \Rightarrow Test weights of 5, 10, 15

Details see here

 $\Rightarrow\,$ Significant bias reduction by including strongly weighted Z $\rightarrow\,\mu\mu$ tracks

Inclusion of $Z \rightarrow \mu \mu$

Inclusion of $Z \rightarrow \mu \mu$: $\cos \phi_{3D}$

Validation Strategy

- \blacksquare Run Pseudo-PCL alignment on run that shows prominent d_z vs η bias in prompt reco, using
 - 1. Only MinBias data (standard)
 - 2. MinBias and Z $ightarrow \mu\mu$ data
- $\label{eq:but:linear} \begin{array}{l} {\rm But:} \ \sim \mbox{20 times more MinBias} \\ {\rm than} \ {\rm Z} \rightarrow \mu \mu \ {\rm tracks} \end{array}$

 - \Rightarrow Test weights of 5, 10, 15

$\cos \phi_{\rm 3D}$ results

• Recalculate last bin asymmetry using alignments derived with different Z $\rightarrow \mu\mu$ weights

$Z o \mu \mu$ weight	Last bin asymm.
0 (HG PCL)	$41\%\pm3\%$
5	$11\%\pm2\%$
10	$8\%\pm2\%$
15	$6\%\pm2\%$
	Details see h

 $\Rightarrow\,$ Significant bias reduction by including strongly weighted Z $\rightarrow\,\mu\mu$ tracks

DMR validation: BPIX

DMR validation

- Refit track without hit of interest
- Measure distance between measured hit and prediction by the fit wrt local module coordinates (denoted x' etc.)
- Calculate the median of these "residuals" for each module

\Rightarrow No significant loss in alignment performance

DMR validation: FPIX

DMR validation

- Refit track without hit of interest
- Measure distance between measured hit and prediction by the fit wrt local module coordinates (denoted x' etc.)
- Calculate the median of these "residuals" for each module

\Rightarrow No significant loss in alignment performance

Long-term studies

Details see here

- Simulate iterative alignment updates, using previous alignment as input
- 2023Cv4 data, run 367881 to 368423
- Iterative propagation might lead to larger deviations between different PCL options

Long-term studies

Details see here

- Large d_z vs η asymmetry \Rightarrow large RMS of $d_z(\eta)$
- $\Rightarrow\,$ Bias reduction over whole lumi range through introduction of Z $\rightarrow\,\mu\mu$ tracks
 - Checked DMR vs lumi as well, no significant differences

PCL Alignment

 d_z vs η Bias

Inclusion of $Z \rightarrow \mu \mu$

Outlook and Summary

Summary

- HG PCL performs well but leads to bias in specific variables
- \blacksquare Inclusion of $\mathsf{Z} \to \mu \mu$ tracks in alignment procedure leads to
 - Reduced bias in $d_z(\eta)$ and $\cos\phi_{\rm 3D}$
 - No significant change in DMR
- \Rightarrow Reduced need for re-reconstruction passes during Run 3
- Studies done using prompt data, while PCL runs on express
 - Smaller fraction of ${\rm Z} \to \mu \mu$ tracks expected in express
 - \Rightarrow Use larger weight of 10

Outlook and Summary

Operational Plan

- PR with PCL update included recently merged into CMSSW_14_0_X
- Planning to test it on the tier-0 replay
 - Starting within next few days
- If validation successful, create new tag such that 3 workflows are in place::
 - 1. LG PCL alignment (MinBias only)
 - 2. HG PCL alignment (MinBias only)
 - 3. HG PCL alignment (MinBias + Z $\rightarrow \mu\mu$)
- Plan to use 2. in production tag during 900 GeV after first offline update with 3. in dummy tag.
 - $\rightarrow\,$ If trend plots look ok, plan to deploy 3. for collisions at 13.6 TeV

PCL Alignment

 d_z vs η Bias

Inclusion of Z $\rightarrow \mu \mu$

Validation

Summary 14 / 14

Backup

PCL Alignment

Inclusion of Z $\,\rightarrow\,\mu\,\mu$

Lorentz drift

- Accumulated radiation affects Lorentz drift in tracker modules
 - $\rightarrow\,$ Biases local hit reconstruction
 - $\rightarrow\,$ New pixel calibration every $\sim 10\,{\rm fb}^{-1}$
- Opposite effect on modules with inward and outward pointing E field in BPIX
- ⇒ High granularity alignment (HG) can correct these radiation effects

- Distribution of median residuals for inward/outward pointing modules
- \Rightarrow Difference between both means ($\Delta \mu$) can quantify radiation effects

Inclusion of other Dimuon Resoncances

Tracks from JPsi are not so effective as the ones from Z, despite larger stat.

 Adding JPsi tracks in addition to Z (and min-bias) to the alignment does not seem to contribute to reduce the bias further -just judging from this one validation.

Taken from this talk

Summary

Long-term studies: $\Delta \mu$ BPIX

Figure: $\Delta \mu$ parameter in BPIX as function of luminosity

PCL Alignment

Inclusion of Z $\rightarrow \mu \mu$

Long-term studies: $\Delta \mu$ FPIX

Figure: $\Delta \mu$ parameter in FPIX as function of luminosity