Tracking in Dense Environments

Hichem Bouchamaoui On Behalf of the Tracking POG

CMS Week Plenary February 7, 2024

The CMS Tracker and Tracking Algorithm

- The CMS Tracker has coverage up to $|\eta| = 3$ and 4 layers in the barrel of the pixel detector after the Phase-1 upgrade [JINST 16 (2021) P02027].
- CMS Tracking algo: <u>Combinatorial Track Finder</u> (CTF) \rightarrow **Iterative.**

Four steps in each iteration:

- 1. Seed generations: initial track candidate using up to 4 hits.
- 2. **Track finding** based on Kalman filter (pattern recognition), sped up in Run3 with mkFit [CMS-DP-2022-018].
- 3. Track fitting: best estimate of track parameters.
- 4. **Track selection**: track quality requirements (χ^2 and missing hits).

Challenges of Tracking in High p_T Jets

Isolated high momentum primary tracks are easy to reconstruct and CPU efficient (PV constraint, small search window..), however as p_{T}^{jet} increases:

- ➢ Increasing density of hits and occupancy of merged clusters
 → increased combinatorics.
- ➢ More candidate tracks → increased
 CPU time.

Dedicated tracking iteration in core of high p_T jets: **JetCore**.

JetCore Algorithm

Cluster splitting and track iteration in the core of high p_{T} jets:

- 1) Cluster Splitter: (modified k-means algorithm)
- Clusters with **size and ADC** count compatible with merged clusters
- Split into N sub-clusters with N = Round($\frac{ADC^{(cluster)}}{ADC^{(predicted)}}$).

- 2) Tracking iteration (one of the last):
- Execute on clusters within $d\phi$, $d\eta < 0.2$ of calo-jet axis for jets with $p_{\rm T}^{\rm jet} > 100~{\rm GeV}$
- Use <u>CKF Trajectory Builder</u> testing a max of **50 track candidates**
 - **CPU intensive** relative to standard tracking (5 candidates).

<u>4. Repeat until convergence</u>

CMS DP-2014/032

3. Low probability pair

JetCore Performance

Significant improvement in tracking efficiency, especially for ΔR (jet, track) < 0.1.

Challenges:

- Near the limit set by MC truth cluster splitting.
- Uses loose (50%) hit matching, using standard tighter
 (75%) matching leads to significant decrease in efficiency.
- Increased max candidate limit requires increased CPU time relative to standard tracking.
- → **Solution: direct seed creation** using a Convolutional Neural Network (CNN).

DeepCore: CNN for Tracking in the Core of High p_T Jets

- CNN recognizes charge deposition patterns in BPIX for single vs. multiple particles.
- DeepCore predicts BPIX2 Track Crossing Points (TCP) used for seeding.
- Trained with Run2 MC in the **barrel region** ($|\eta^{\text{jet}}| < 1.4$).

Valerio Bertacchi, Mia Tosi

DeepCore Performance

- Improved **timing** performance, tracking **efficiency** and fake rate in the tracking iteration in the core of high p_T jets .
- DeepCore not deployed in Run3 due to degraded performance for non-prompt tracks.

CMS WEEK PLENARY - FEBRUARY 2024

DeepCore 2.0 Overview

- Updated version of DeepCore (bug fixes, tuned hyperparameters, Run3 configuration).
- **Cluster selection**: calo-jets with $p_T^{jet} > 100$ GeV and dR(cluster, jet) < 0.25.
- **Cluster inputs**: p_T^{jet} , η^{jet} and 30x30 pixel maps (x, y, normalized ADC) for all 4 BPIX layers.
- Prediction: position and p_T of TCPs for BPIX2 pixel (30x30).
 O DeepCore2.0 can predict up to 3 TCP per pixel, similar to DeepCore.

Hichem Bouchamaoui, Nick Haubrich, Soohyun Yoon, Jim Olsen

Example Output

For a calo-jet with $p_{\rm T}^{\rm jet}$ = 1786 GeV and $\eta^{\rm jet}$ = –0.08, DeepCore2.0 predicts:

- The same number of TCPs as the number of target TCPs (7).
- TCP positions relatively close to target TCPs.

DeepCore 2.0 Performance

DeepCore2.0's CPU time ~35% of JetCore.

Evaluated on 10k high p_T QCD MC events using Run 3 conditions:

- **10-15% higher** efficiency relative to DeepCore.
- 20% higher efficiency relative to JetCore for tracks with $p_{\rm T}^{\rm track} > 100$ GeV.
 - \bigcirc No increase in fake rate.

Challenge: significantly lower efficiency for displaced tracks (similar to DeepCore).

 \rightarrow **Solution:** Run a hybrid combination of DeepCore2.0 and JetCore.

Reconstructed track p_T (GeV) Tracking efficiency and fake rate for tracking iteration replacing JetCore

10

 10^{2}

True track p_T (GeV)

10

14 TeV

eepCore 2.0 DeepCore 1.0

14 TeV

eepCore 2.0 DeepCore 1.0

Hybrid Tracking: JetCore + DeepCore2.0

Run both algorithms together using 30 max candidates (instead of 50):

- Overall track reconstruction CPU time reduced by 1%.
- Higher efficiency than either algorithm separately (up to 35% improvement).
 O No significant increase in fake rate.
- Improved efficiency for displaced tracks.

CMS WEEK PLENARY - FEBRUARY 2024

Effect on Total Tracking Efficiency

- Overall tracking efficiency increases by **10% relative to JetCore** for $p_{\rm T}^{\rm track} > 100$ GeV.
- Slight improvement in efficiency vs. η^{track} and φ^{track}.
 S% higher in the BPIX3/4 inefficiency region [CMS-DP-23/090].
- DeepCore2.0-Hybrid is now enabled since CMSSW_14_0_0_pre2 release for 2024 data taking/MC and future (re)processing, with validation ongoing.
- Further improvements: timing optimization, 40x40 window size, and BPIX3 predictions.

Merged Clusters in Dense Jet Cores in the Phase-2 Inner Tracker

Phase-2 upgrade [CMS-CR-2022-162]: the upgraded pixel modules will improve the pixel detector granularity

➤ Improved granularity expected to mitigate merged clusters → Are JetCore/DeepCore2.0 still needed? <u>Method</u>: count SimTracks in RecHit cluster (Phase-1 vs Phase-2) via PixelDigi and perform jet-RecHit association by maximizing collinearity (for simplicity: no PU + consider SimTracks from main PV). Fabio Luo

Phase-2 Tracker

Hichem Bouchamaoui (Princeton University)

Phase-1 Tracker

CMS WEEK PLENARY - FEBRUARY 2024

Merged clusters in dense jet cores in the Phase-2 Inner Tracker

- Significantly less clusters associated with more than 1 SimTrack on Layer 1 with d < 0.1 cm
- \rightarrow Less dense environment means fewer merged clusters expected.
- However still ~20% clusters with 2+ SimTracks for $p_T^{jet} > 2$ TeV \rightarrow cluster splitting is still needed.

Future plans:

- Run JetCore cluster splitter with Phase-2 configuration and repeat this study.
- Evaluate the impact of **DeepCore2.0 with Phase-2** configuration vs Phase-1 configuration.

Seagulls & Cowboys (S&C) in Dense Environments

- Run2-based performance study of track pairs in high p_T jets using DY events.
- S&C production is expected to be symmetric → an asymmetry can indicate the tracking inefficiencies in dense environment (overlapping tracks).
- Preliminary results show similar efficiencies between S&C in most regions except the mid-rapidity region (plot below).
 - Improved selection may yield different results.

<u>Cristina Giordano,</u> <u>Robert Schoefbeck</u>

φ+

 $\Delta \phi > 0$

Cowboys:

bent together

Summary

- Tracking in the core of high p_T jets is challenging due to the increasing occupancy and combinatorics.
- CMS currently mitigates these challenges with JetCore and enabling DeepCore2.0-Hybrid can further improve tracking in dense environments and free up CPU resources for other iterations.
- Despite the significant improvement in granularity provided by the Phase-2 pixel detector, preliminary studies show that cluster splitting is still needed.
 - □ However, more testing is required to evaluate the need of JetCore and the impact of DeepCore2.0 on Phase-2 tracking performance.
- The study of seagull/cowboy pairs may offer ways to improve the tracking efficiency in dense environments.

BACKUP

JetCore Hit-Match

Hichem Bouchamaoui (Princeton University)

Impact of DeepCore2.0-Hybrid on B-tagging Efficiency

- From recent <u>Relval of CMSSW 14 0 0 pre2</u> (after enabling DeepCore2.0-Hybrid)
 - o e.g. deepFlavor in RelValQCD Pt 1800 2400 14.

Hichem Bouchamaoui (Princeton University)

DeepCore2.0: Inputs

• Merged cluster selection:

- Clusters that have charge and shape consistent with the expected charge and shape of a merged cluster are selected.
- Selected merged clusters on BPIX1 must satisfy the following criteria:
 - Associated with AK4 calo-jets with $p_T^{jet} > 500$ GeV.
 - Within a cone of ΔR(jet, cluster) = √Δη²(jet, cluster) + Δφ²(jet, cluster) ≤ 0.1 of the intersection of BPIX1 and the calo-jet jet axis, where η is the pseudorapidity and φ is the azimuthal angle.
- If there are no merged clusters on BPIX1, then merged clusters on BPIX2 satisfying the above criteria are selected.

• Merged cluster information:

- p_T^{jet} and η^{jet} .
- 30×30 pixel maps in x (azimuthal direction) and y (beam direction) with normalized analog-to-digital converter (ADC) counts for each pixel.
 - The ADC count is normalized to the mean value of the charge deposition in a pixel (14k) since the CNN yields better results with input values of order 1.
 - The pixel maps are centered on the axis connecting the merged cluster with the primary vertex (PV) for all 4 BPIX layers (merged-cluster axis).

CMS DP-2024/003

DeepCore2.0: Target and Prediction

- Target and prediction format: three 30 \times 30 Track Crossing Point (TCP) maps and three 30 \times 30 Track Parameters (TP) maps.
- TCP maps:
 - Target TCP map: every BPIX2 pixel is assigned a value of 1 if a particle crossed a pixel and 0 otherwise.
 - Prediction TCP map: every BPIX2 pixel is assigned a score between 0 and 1 reflecting the likelihood of a track crossing point being within the boundaries of that pixel.
- TP maps:
 - Track Parameters are Δx and Δy between the center of a pixel and a TCP, relative azimuthal angle (Δφ) and relative pseudorapidity (Δη) between the center of a pixel and the merged-cluster axis, and p_T of the reconstructed track associated to the TCP. The TCP charge is positive by default and adjusted as needed when testing candidate tracks.
 - Target TP maps: track parameters of TCP pixels and pixels within 2-pixel radius.
 - Prediction TP maps: predicted track parameters for every TCP pixel.
- If 2 particles cross the same pixel, the second set of Target TCP/TP maps (Overlap maps 2) is filled with the second TCP information. Similarly, Overlap maps 3 are used if 3 particles cross the same pixel. Prediction TCP/TP Overlap maps 2 and 3 are always filled.

DeepCore2.0: Training Details

- Dataset: 2M QCD multijet simulated events generated with Pythia 8 [7], with:
 - Proton-proton center of mass energy $\sqrt{s} = 14$ TeV.
 - Transverse momentum of hard-scatter sub-process (\hat{p}_T) between 1.8 TeV and 2.4 TeV.
 - Flat pileup (PU) of 55-75 in the Run 3 configuration of the CMS detector.
- Jet selection: $p_T^{\text{jet}} > 500 \text{ GeV}, |\eta^{\text{jet}}| < 1.4.$
- Cluster selection: clusters with charge and shape similar to the minimum expected charge and shape of a merged cluster and $\Delta R(\text{jet}, \text{cluster}) \le 0.1$.
- Simulated track selection: $p_T^{\text{track}} > 1 \text{ GeV}$.
- Training sample: 10.5M clusters with validation subset of 20%.
 - This subset of the training sample is used to monitor and mitigate over-training, which occurs when a CNN "learns" features specific to the samples it was trained on and do not apply to other samples.
- Testing sample: 150k clusters.

DeepCore2.0: Training Details

- Activation Function: all ReLu [8] except Sigmoid on the last TCP CONV layer.
- Loss function: a weighted Binary Cross Entropy [9] for TCP maps and a clipped Mean Square Error for TP maps.
- Optimizer: Adam [10]
- batch size: 64.
- Total Parameters: 192,769.
- Training steps and architecture:

Epochs	Learning Rate (LR)	TCP Loss Function
1-15	10 ⁻⁴	Weighted Binary Cross Entropy
16-20	10 ⁻⁵	Weighted Binary Cross Entropy
21-25	10 ⁻⁵	Weighted Binary Cross Entropy (including far pixels)
26-30	10 ⁻⁶	Weighted Binary Cross Entropy (including far pixels)

DeepCore2.0: Prediction Threshold

The prediction score distribution for signal (predicted TCP associated to a true TCP) and background (predicted TCP not associated to a true TCP) are shown above for Overlap 1 (left), Overlap 2 (middle) and Overlap 3 (right). There are fewer true TCPs in Overlap 2, which requires a higher threshold to preserve signal efficiency. The number of true TCPs on Overlap 3 is not significant, which warrants disabling Overlap 3 predictions in order to preserve signal efficiency.

- Thus, the following prediction thresholds are used: 0.7/0.85/1(disabled) for the first/second/third particle in Overlap.
- Moreover, the set of prediction thresholds is raised if BPIX1/3/4 are empty (0.8/0.9/1) and if BPIX2 is empty all predictions are disabled (1/1/1).

CMS DP-2024/003

Merged clusters in dense jet cores in the Phase-2 Inner Tracker

	η _{jet} range							
	Phase-1			Phase-2				
Jet p⊤ range [GeV]	0.0–0.6	0.6–1.5	1.5–1.8	0.0–0.6	0.6–1.5	1.5–1.8		
50–100	9384	12126	3199	9494	12095	3268		
100–250	11730	14712	3703	11511	14509	3690		
250–500	7679	9135	2106	7759	9129	2037		
500–1000	5169	5571	982	5094	5562	959		
1000–2000	2162	1775	115	2096	1633	123		

∓ $d \in [0, 0.1]$ cm; Phase-1 **∓** $d \in [0.1, 1]$ cm; Phase-1 **−₹** $d \in [1, 10]$ cm; Phase-1 **≠** $d \in [0, 0.1]$ cm; Phase-2 **→** $d \in [0.1, 1]$ cm; Phase-2 **→** $d \in [1, 10]$ cm; Phase-2

Fabio Luongo, Ernesto Migliore

Hichem Bouchamaoui (Princeton University)

CMS WEEK PLENARY - FEBRUARY 2024

Seagulls & Cowboys (S&C) in Dense Environments

• Object selection									
0	Tracks	\rightarrow	$dR(j, t) < 0.4 \& pdgId_{Tracks} = 211$ jetConsti		ents				
0	Jets	\rightarrow	MEF < 0.2	slimmedJet	ts				
0	Muons	\rightarrow	p _T >20	slimmedMuons					
				DYJetsToLL_M50_LO(_ext1)	DYJetsToLL_M50_HT400to600_LO(_ext1)				
• Samples (miniAODSIM)				DYJetsToLL_M50_NLO	DYJetsToLL_M50_HT600to800_LO				
			M)	DYJetsToLL_M50_HT70to100_LO	DYJetsToLL_M50_HT800to1200_LO				
				DYJetsToLL_M50_HT100to200_LO(_ext1)	DYJetsToLL_M50_HT1200to2500_LO				
rs –	\rightarrow			DYJetsToLL_M50_HT200to400_LO(_ext1)	DYJetsToLL_M50_HT2500toInf_LO				
	Obj ° ° Sam	Object select \circ Tracks \circ Jets \circ Muons Samples (min	Object selection \circ Tracks \rightarrow \circ Jets \rightarrow \circ Muons \rightarrow Samples (miniAODSI	Object selection \circ Tracks \rightarrow dR(j, t)<0.4 & \circ Jets \rightarrow MEF < 0.2 \circ Muons \rightarrow p _T >20 Samples (miniAODSIM)	Object selection \circ Tracks \rightarrow dR(j, t)<0.4 & pdgId_{Tracks} =211 jetConstitu \circ Jets \rightarrow MEF < 0.2 \circ Muons \rightarrow p _T >20SlimmedMiDYJetsToLL_M50_LO(_ext1)DYJetsToLL_M50_LO(_ext1)DYJetsToLL_M50_NLODYJetsToLL_M50_HT70to100_LODYJetsToLL_M50_HT70to100_LODYJetsToLL_M50_HT70to100_LODYJetsToLL_M50_HT100to200_LO(_ext1)DYJetsToLL_M50_HT200to400_LO(_ext1)				

• Charge requirement $\rightarrow q_{\text{Track}_1} + q_{\text{Track}_2} = 0 \rightarrow \text{Pair of tracks}$

• If
$$\begin{cases} d\phi_{Pair} > 0 \rightarrow Cowboy \\ d\phi_{Pair} < 0 \rightarrow Seagull \end{cases}$$