

S&C Week: Fast Calorimeter Simulation Group Progress Report

Firdaus Soberi

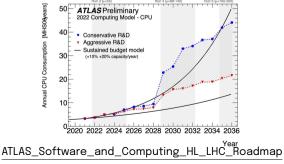
University of Edinburgh On behalf of FastCaloSim Group

6 February, 2024

2/34

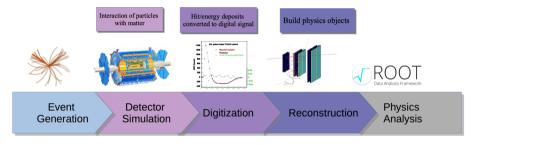
ATLAS Future Program

- Wide ranging physics program from precision measurements to BSM searches.
- **Run3** Increase in \sqrt{s} and pileup
- **HL-LHC** Increase in \sqrt{s} and pileup



- CPU requirements will increase due to luminosity
- Rely on MC events stats several times data luminosity
- Fast Simulation for majority of events in Run3 and HL-LHC

Simulation in ATLAS

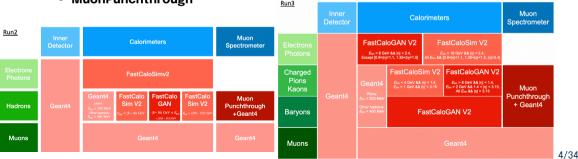


- Largest proportion of CPU time spent on **Detector Simulation**
- **80**% of Geant4 simulation time is spent in calorimeters [1]

[1]ATLFAST3(2022)

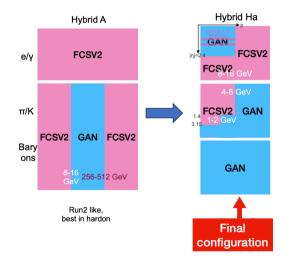
AtlFast3 (AF3)

- Fast simulation suite employed in ATLAS for Run3, distinct shower generation mechanism: 3x - 15x faster than Geant4 in many processes.
- Improves physics performance significantly over AF2 (Run1 & Run2).
- Three main components for calorimeter simulation:
 - FastCaloSimV2 parameterised modelling
 - FastCaloGANV2 Deep learning using GANs
 - MuonPunchthrough



- AF3 configuration finalised & released: ATLPHYSVAL-970
- Latest production MC23d campaign: link, link2
- Today: progress since last S&C Week <u>SC_03Oct2023</u>

AF3 Release



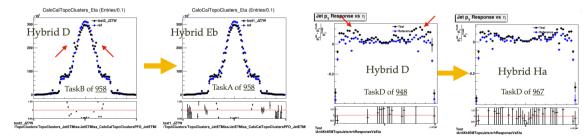
- How did we come to this? SimMeeting_20230912,
 - 5 PhysVal and 10 configurations later...
 - Final AF3 configuration w/ pileup, tuned for e/γ, hadron, π/K cluster, transition region spikes and maximise GAN...
 - Introduced p GANs for dealing better with baryons...

xtend range of ECSV2 to |n| > 2

EXPERIMI

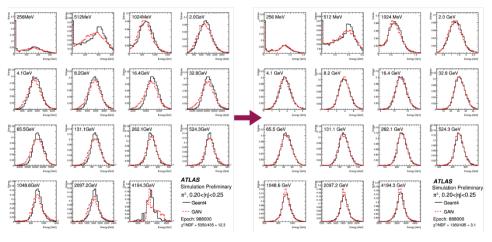
• Spikes at $|\eta| \sim$ 1, add additional FCSV2 for harder to model (GAN) slice.

 Extend range of FCSV2 to |η| > 2.4 to suppress jet p_T response.



Run 2

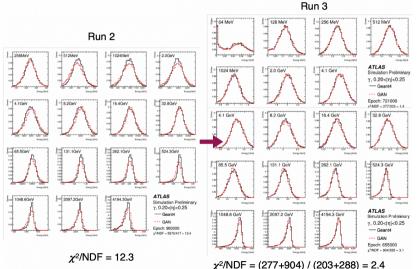
Run 3



 χ^2 /NDF = 12.3

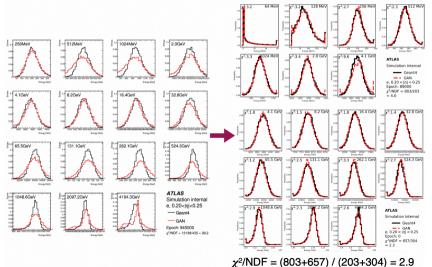
 χ^{2} /NDF = 3.1

FastCaloGANV2 (γ)



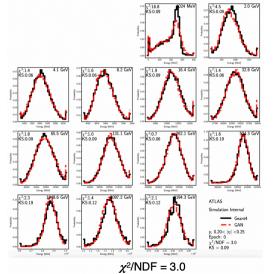
9/34

FastCaloGANV2 (e)

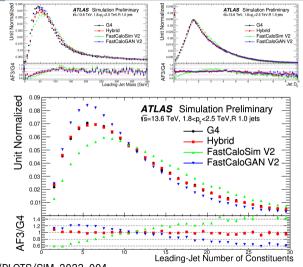


10/34

FastCaloGANV2 (p)

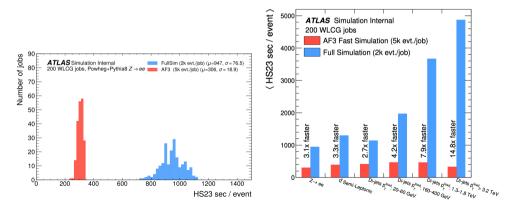


AF3: Physics Modelling (JZ7)



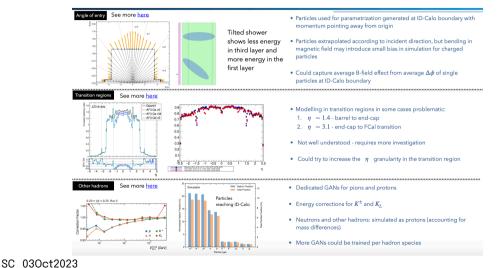
AF3 Performance

• **Much faster** than fullsim! (especially in high energy dijets with more particle showers)



SimMeeting_11Dec2023

Challenges and Opportunities

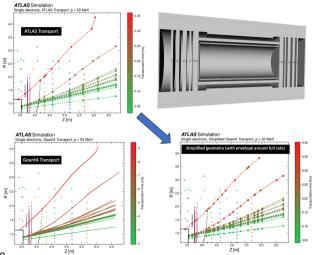


Recent Developments

- Beyond ISF: Integration of FastCaloSim within <u>G4VFastSimulationModel</u>
 - Replace ATLAS track transport with Geant4 propagation in simplified geometry: pyGeoSimplify package for simplified geometry inference →repo
- ONNX integration into FastCaloSim \rightarrow finally!
- Containerisation of FastCaloGAN allow independence from lxplus architecture and better training on different machines!

Resource	Details	Testing Situation
INFN- Bologna Cluster	INFN Bologna computing cluster. (Old) nodes w/ CentOS7, CVMFS, HTCondor, no GPUs	Done and successful
OPH Cluster	Cluster of the Open Physics Hub Project of the University of Bologna. Several nodes w/ Rocky Linux 8, SLURM, no CVMFS, no GPUs	Done and successful
INFN-CNAF	INFN-CNAF HPC cluster (close to WLCG INFN-T1) CentOS7 nodes, no CVMFS, SLURM, V100 GPUs	Done and successful

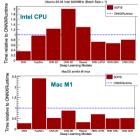
Track Transport: G4 FastSim



SimMeeting_11Dec2023

ML Inference: ONNX and Beyond

- GANs for FastCaloSim so far have been trained in LWTNN.
- ONNX: de-facto industry standard \rightarrow recently implemented into FCS: <u>168057</u>
- SOFIE: "System for Optimised Fast Inference code Emit"
 - Takes ONNX file and converts into C++ equivalent inference function
 - TMVA-based, minimal dependency: only on BLAS
- Speed-up irrelevant, up to 10x memory reduction allows possibility to expand GAN's usage.

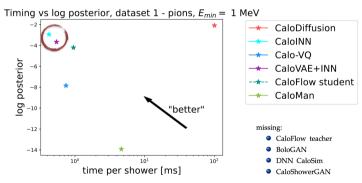


AF3_Workshop_ONNX,SOFIE_CHEP23

- ML Preprocessor Parametrised FCS as input to ML models.
- Pre-trained models for extracting subdetector-specific parameters.
- ML inpsired voxelisation scheme : E.g K-mean clustering algorithm, rather than regular voxels.
- More GPU-based implementation for multi-threading in FCSV2.
- Exploring beyond GAN models: CaloChallenge.

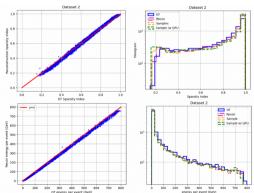
Towards Object-based Modelling

- Normalizing flow/diffusion based for photons.
- VAE/INN-based for pions.



- Possibility of using QPU for fast simulation.
- 12x faster wall-time (generate 1024 samples) with QPU over GPU.
- Tested in the context of DataSet 2 from CaloChallenge.
- Far-future consideration for quantum-assisted generative model.

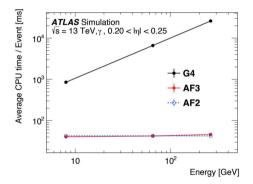
	Wall time to generate 1024 samples
Calorimeter Geant4	$\sim 400 \ s$
GPU A100	$2.19 \pm 0.14 \ s$
QPU	$\sim 0.180 \ s$
Decoder	$\sim 0.01 \ s$



SimMeeting_11Dec2023

Summmary

- AtlFast3 for Run3 successfully validated, current tag a911, MC23d improves pileup condition.
- Excellent physics modelling good agreement across many physics objects → thanks to comments received from CP groups, more feedback welcome!
- **Speed-up of factor 3x-15x** over full simulation (depending on process/energy range).
- Exciting interplay between machine-learning inspired techniques and physics optimisations → more developments in the pipeline.

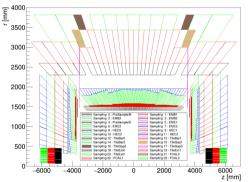


The End

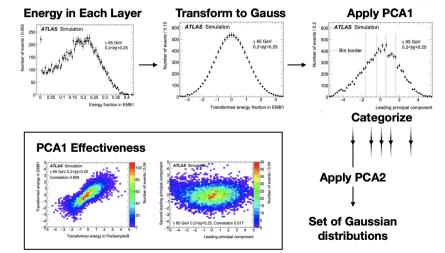
Backup

Input Datasets for AF3 modelling

- Geant4 simulated single particles generated at the calorimeter surface
 - Single Photons for photon shower
 - Single Electrons (e^{\pm}) for electron shower
 - Single Pions (π[±]) for chraged pions/kaons shower
 - Proton samples for baryonic shower
- Record energy deposit in calo **layers** and **cells**.
- Simulated in grid of η and incoming momentum

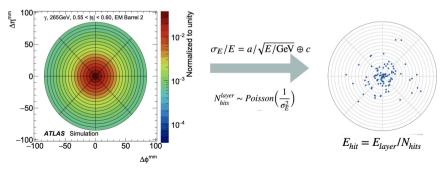


FastCaloSim: Parameterisation



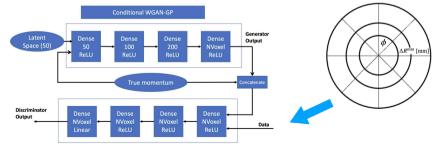
FastCaloSim: Parameterisation

- Average radial energy distribution in each calo layer is used as a PDF
- *N_{hits}* is calculated to give the same **Poisson RMS** as the resolution of the calorimeter layer.
- Hadronic energy deposits are **weighted** to account for fluctuations.

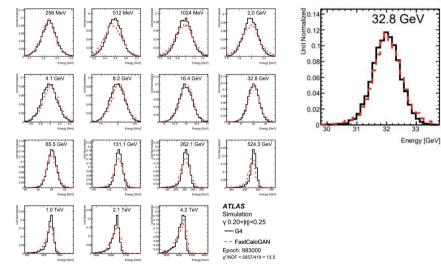


FastCaloGAN: GAN Setup

- Generative Adversarial Network (GAN) using TensorFlow2 to generate showers
- Incorporates longitudinal and lateral modelling, and correlations
- Calorimeter deposits are **voxelized** in $\Delta {\it R}$ and η
- One GAN is trained with gradient penalty for each region, inclusive in truth momentum



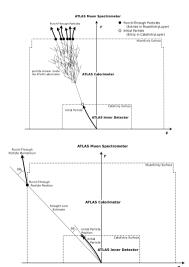
FastCaloGAN: Best Epoch



29/34

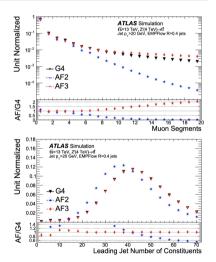
FastCaloSim: Muon Punchthrough

- The punch-through particles are parametrized by their dependence in energy and direction:
 E, Δθ Δφ, Δθ_p and Δφ_p
- **NN classifier** to estimate probability to produce punch-through particle of various types
- **Principal Component Analysis (PCA)** is run on FullG4 input samples to decorrelate the dependence.
- Simulate kinematics of secondary punch-through particles by sampling parametrization (inverse PCA).



Result: Physics Modelling

- FCSv2 Improved correlation and shower depth modelling from V1.
- FCSv2 Improved lateral modelling and correlations
- **FastCaloGAN** Better correlations, and sub structure modelling.
- **MuonPunchThrough** Modelling of fake muons, improved modelling, added more particle types including kaons.



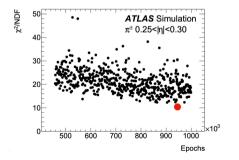
FastCaloGAN: GAN Training

Strategy

- An incremented training strategy is used:
 - start with 32 GeV and train for 50K epochs
 - add new incoming momentum points every 20K epochs
- In total each GAN is trained for 1M epochs, checkpoint saved every 1k

Checkpoint selection

- **Best** performing epoch needs to be selected.
- χ² between total energy generated by GAN and Geant4 is used as metric
- Select epoch with lowest χ^2



FastCaloSim - Energy Interpolation

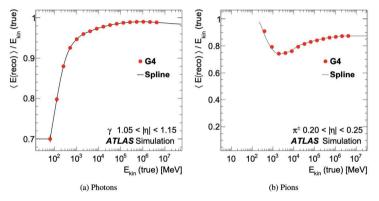
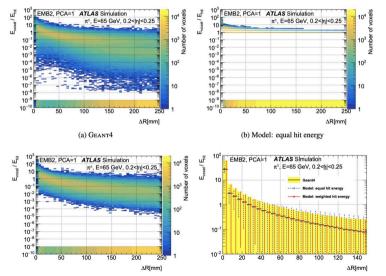


Figure 22: Energy response, defined as the ratio of the reconstructed energy in the calorimeter cells to the kinetic energy of the particle, for (a) photons in $1.05 < |\eta| < 1.10$ and (b) pions in $0.20 < |\eta| < 0.25$. The red dotted points represent the response derived at discrete energies, using GEANT4 simulated single particles. The black line is a spline fit used to interpolate between discrete energy points. The statistical uncertainties are shown but are similar in size to the points or smaller.

FastCaloSim - Weighted Hits



33/34

 $Z'(4 TeV) \rightarrow tt$

