
ATLAS’s Accelerator 
Language Choice… is C++

Attila Krasznahorkay



The Setup

● We have milestones defined for choosing a language to program GPUs with, in 
both the S&C R2R4 planning document and in TDAQ’s EF Tracking schedule

○ Today’s talk is meant to address both of these milestones, and put them both to rest (for the time 
being…)

2



The Setup

● What this talk is meant to address is
○ How custom, hand-written algorithms, meant to run on GPUs, are to be written for the offline and 

trigger software
○ How people should organise their code
○ Just a little bit of how people are expected to build/test their code

● What this talk is not meant to address is
○ What sort of GPUs ATLAS would buy/use in the short and long terms
○ How we would deal with machine learning training and inference
○ How we would (efficiently) schedule the execution of hand-written GPU algorithms in our offline and 

trigger software

3



GPU Programming Basics

4



The Architecture

● GPUs have a lot more processing cores 
than CPUs do

○ And they can have orders of magnitudes more 
threads in flight than a CPU

● However all those cores are not nearly 
as independent as CPU cores are

○ Task based multithreading, like what we do in 
the offline/trigger code, does not fit to them

○ We must use a SIMT “approach” for our code

● Generally, we write functions (kernels) 
that would be executed on tens / 
hundreds of thousands of threads at the 
same time

5

https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Memory Management

● All “primary” languages provide 
low-level ways of (de-)allocating and 
copying memory

● Which APIs are fairly easy to write 
GPU SDK independent abstractions 
on top of

○ One such abstraction (vecmem) is 
available in Athena since December

● Generally, memory handling is not the 
biggest issue when choosing a GPU 
SDK / language

6

https://github.com/acts-project/vecmem
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html
https://intel.github.io/llvm-docs/doxygen/namespacesycl_1_1__V1.html
https://intel.github.io/llvm-docs/doxygen/namespacesycl_1_1__V1.html
https://acts-project.github.io/vecmem/classvecmem_1_1data_1_1jagged__vector__buffer.html
https://acts-project.github.io/vecmem/classvecmem_1_1data_1_1jagged__vector__buffer.html


Writing / Launching Kernels

● In all cases we write “some function”
○ Depending on the language this may need 

to be a standalone function, or could be 
even something like a functor or lambda

○ The compiler needs to recognize it as a 
“kernel” function, to generate the 
appropriate binaries for it

● We tell “some runtime API” to launch 
this function, with a set of arguments, 
on a selected number of GPU threads

7

https://github.com/acts-project/vecmem/blob/main/tests/hip/test_hip_containers_kernels.hip
https://github.com/acts-project/traccc/blob/main/device/alpaka/src/seeding/spacepoint_binning.cpp


Device Code

● Is mostly pretty standard C(++)
○ “Kernel” functions can call as many “device” 

functions as they wish, just like in regular C++

● With (mostly) the following extensions:
○ Atomic operations on memory shared by all / 

some of the threads
○ Cooperative usage of memory dedicated to a 

block of threads
○ Synchronization points between the threads

● Other, language specific features also 
exist, but were not needed in the 
tracking R&D so far

○ The calo clusterization R&D code uses one 
CUDA specific feature right now that we’ll 
need to see about…

8

https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/seeding/device/impl/find_doublets.ipp
https://gitlab.cern.ch/atlas/athena/-/blob/main/Calorimeter/CaloRecGPU/src/TopoAutomatonClusteringImpl.cu?ref_type=heads


GPU R&D Takeaways

9



Considered / Tested Languages

● The “support matrix” is a bit misleading
○ To produce NVIDIA, AMD and Intel binaries, you must have CUDA, HIP and oneAPI available 

respectively. Something like Alpaka, or even oneAPI, needs CUDA in the background for producing 
NVIDIA binaries!

● I.e. the “abstraction layers” don’t help a lot with “platform support” or licensing 🙁

10

CUDA HIP SYCL Kokkos Alpaka std::par

NVIDIA ✅ ✅ ✅ ✅ ✅ ✅
AMD ❌ ✅ ✅ ✅ ✅ ✅
Intel ❌ ❌ ✅ ✅ ✅ ✅

https://developer.nvidia.com/cuda-toolkit
https://rocm.docs.amd.com/projects/HIP
https://www.khronos.org/sycl/
https://kokkos.org/
https://alpaka.readthedocs.io
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag


The traccc Lesson(s)

● In the GPU Tracking R&D (traccc) 
we’ve set up a very large amount of 
code sharing between the different 
GPU languages

○ Just by carefully thinking it over how we 
should organise the source code

● The amount of language specific code 
is not negligible, but can be 
written/translated very automatically

○ Didn’t try it myself with traccc, but 
HIPIFY, DPCT, SYCLomatic, etc. could 
even do >90% of this automated work 
when/if needed.

11

https://github.com/acts-project/traccc
https://github.com/ROCm/HIPIFY
https://www.intel.com/content/www/us/en/docs/dpcpp-compatibility-tool/get-started-guide/2024-0/overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/seeding/device/impl/find_doublets.ipp


G
en

er
ic

 C
++

SYCL

CUDA

The traccc Lesson(s)

12

https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/seeding/device/count_doublets.hpp
https://github.com/acts-project/traccc/blob/main/device/cuda/src/seeding/seed_finding.cu
https://github.com/acts-project/traccc/blob/main/device/sycl/src/seeding/seed_finding.sycl
https://github.com/acts-project/traccc/blob/main/device/cuda/src/seeding/seed_finding.cu


Conclusions

13



The Choice of No Choice

● Instead of buying into a specific SDK, we have to structure all our new GPU code 
such as to make it easy/trivial to use different SDKs with the same “core” code

○ Performance penalties for using a “non-native” SDK are pretty minimal at the moment, but we will 
continue monitoring this

● Depending on how licensing and technical developments go, we may very well 
come out with a recommended SDK in the end

○ But even at that point, code will be structures so that it would still be easy to use from other SDKs as 
well at a later date

● For now, CUDA will be the easiest to use with Athena nightlies, inside the CERN 
firewall

○ oneAPI can be used already today from CVMFS, with a bit of manual environment setup
■ Even with GCC 13! Today!

○ HIP can not be installed on CVMFS just yet, but hopefully soon…

14



Summary

● If you’re just now starting out, have a look at:
○ Control/AthenaExamples/AthExCUDA
○ Control/AthenaExamples/AthExSYCL
○ Will add slightly more elaborate examples, with code sharing between CUDA and SYCL, in not too 

long

● If you have a working setup already, just continue using it
○ Though if you’re not in contact with people from HCAF, please get in touch with us! To make sure 

that your code would be future-proof.

15

https://gitlab.cern.ch/atlas/athena/-/tree/main/Control/AthenaExamples/AthExCUDA?ref_type=heads
https://gitlab.cern.ch/atlas/athena/-/tree/main/Control/AthenaExamples/AthExSYCL?ref_type=heads


Backup

16



17

Code Snippets

https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/seeding/device/impl/count_doublets.ipp
https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/clusterization/device/impl/ccl_kernel.ipp
https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/clusterization/device/impl/form_spacepoints.ipp


18

Code Snippets

https://github.com/acts-project/traccc/blob/main/device/cuda/src/clusterization/clusterization_algorithm.cu
https://github.com/acts-project/traccc/blob/main/device/sycl/src/clusterization/clusterization_algorithm.sycl
https://github.com/acts-project/traccc/blob/main/device/cuda/src/clusterization/clusterization_algorithm.cu


http://home.cern 

19

http://home.cern

