From physics to the SPD setup A. Guskov

Physic case

Hadroproduction

SIDIS

 $\sigma \sim \alpha^2 \alpha_s$

We cannot compete with SIDIS experiments in the study of the quark content of the nucleon

Alexey Guskov, Joint Institute for Nuclear Research

Spin balance

 $J = \frac{1}{2} \frac{\sim 30\%}{\Delta \Sigma + \Delta G} + \frac{L_q}{L_q} + \frac{L_g}{L_g}$

To access angular momenta info about 3D structure is needed!

Physics case: gluons in proton

 $\sigma(x_F, b_T)$

 $A_{LL}(x_F, p_T)$

 $A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \sim \Delta G$

Gluon transversity

3D tomography of proton

Gluon TMDs are mostly unknown!

Nucleon Spin Polarization

5 additional (TMD) functions describing the correlation between the nucleon spin, parton spin, and parton transverse momentum.

Azimuthal asymmetryes in inclusive production

Sivers function (as an example)

k_x (GeV)

The Sievers effect is usually observed together with the Collins effect, an asymmetry arising from the fragmentation of the final state.

Probabilities to meet in a transversely polarized proton a parton moving to the left and to the right with respect to the (S, \vec{p}) plane are different!

Deuterons

Unpolarized gluons

Fig. 6. Gluon PDF in the deuteron and in the nucleon.

New possibilities for gluons: **Gluon transversity**

Tensor structure of deuteron

New 11 "tensor" PDFs, mostly unknown

A_{TT}, tensor asymmetries

Cross sections and rates

	$\sigma_{27\text{GeV}}$,	$\sigma_{13.5\text{GeV}}$,	$N_{27\mathrm{GeV}}$,	Ν
Probe	nb (×BF)	nb (×BF)	10 ⁶	
Prompt- γ ($p_T > 3$ GeV/c)	35	2	35	
J/ψ	200	60		
$ ightarrow \mu^+\mu^-$	12	3.6	12	
$\psi(2S)$	25	5		
$ ightarrow J/\psi\pi^+\pi^- ightarrow \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	
$ ightarrow \mu^+\mu^-$	0.2	0.04	0.2	
$\chi_{c1} + \chi_{c2}$	200			
$ ightarrow \gamma J/\psi ightarrow \gamma \mu^+\mu^-$	2.4		2.4	
η_c	400			
$ ightarrow par{p}$	0.6		0.6	
Open charm: $D\overline{D}$ pairs	14000	1300		
Single D-mesons				
$D^+ \rightarrow K^- 2\pi^+ (D^- \rightarrow K^+ 2\pi^-)$	520	48	520	
$D^0 \to K^- \pi^+ (\overline{D}^0 \to K^+ \pi^-)$	360	33	360	

ARTICLE N PRES

Progress in Particle and Nuclear Physics xxx (xxxx) xxx

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov^a, A. Bacchetta^{b,c}, M. Butenschoen^d, F.G. Celiberto^{b,c,e,f}. U. D'Alesio^{g,h}, M. Deka^a, I. Denisenko^a, M.G. Echevarriaⁱ, A. Efremov^a, N.Ya. Ivanov^{a,j}, A. Guskov^{a,k,*}, A. Karpishkov^{1,a}, Ya. Klopot^{a,m}, B.A. Kniehl^d, A. Kotzinian ^{j,o}, S. Kumano ^p, J.P. Lansberg ^q, Keh-Fei Liu ^r, F. Murgia ^h, M. Nefedov¹, B. Parsamyan^{a,n,o}, C. Pisano^{g,h}, M. Radici^c, A. Rymbekova^a, V. Saleev^{1,a}, A. Shipilova^{1,a}, Qin-Tao Song^s, O. Teryaev^a

^a Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia ^b Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy

^c INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy

^d II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ^e European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT^{*}), I-38123 Villazzano, Trento, Italy ^f Fondazione Bruno Kessler (FBK), I-38123 Povo, Trento, Italy

^g Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato, Italy

^h INFN Sezione di Cagliari, I-09042 Monserrato, Italy

Prog.Part.Nucl.Phys. 119 (2021) 103858

arXiv:2011.15005

SPD physics program

We optimize our setup for gluon studies via these 3 processes **BUT**...

Our setup is planned to be universal enough to study other spin-dependent phenomena as well like:

quark TMDs, GPDs, spin-dependent central production, polarization of hyperons, elastic scattering, etc.

SPD vs. others

In the $d^{\uparrow}d^{\uparrow}$ mode NICA is unique

Requirements to the setup

- Muon system for charmonia
- ECAL for photons \bullet
- precision vertex detector for Dmeson secondary vertex
- PID
- local polarimetry
- luminosity monitor
- unbiased trigger system as well as possible

Study of and det -c-0– p Elastic Single-Vector Scaling lightest Multiq state p Exclus Search central Search Search strange Problem Measu cross-s Hadror collisic Polariz

Physics goal	SVD	ST+	TOF+	ECal	RS	BBC	ZDC
		MCT	FARICH				
Study of polarized gluon content in proton							
and deuteron with:							
– charmonia	+	++	+	++	++		
– open charm	++	++	++	+	+		
 prompt photons 		+		++			
Elastic p - p and d - d scattering		++	+			++	+
Single-spin physics	2	++	++			++	+
Vector light and charmed meson production		++	++		++		
Scaling behavior of exclusive reactions with		++	+			++	++
lightest nuclei and spin observables							
Multiquark correlations and exotic hadron		++	++				
state production							
Exclusive processes in <i>d</i> - <i>d</i> collisions		++	+			++	++
Search for deconfinement in p - p and d - d		++	++				
central collisions							
Search for dibaryons		++	+			+	
Search for lightest neutral hypernuclei with		++	++				
strangeness -1 and -2							
Problems of soft <i>p</i> - <i>p</i> interactions		++	++				
Measuring antiproton production		++	++				+
cross-section for dark matter search							
Hadron formation effects in heavy ion		++	++				
collisions							
Polarization of hyperons		++	+				

SPD setup

Zero degree calorimeter

Time-of-flight system end-cap

Beam-beam counter

Aerogel Cherenkov detector

Straw tracker end-cap

RS geometry and charmonia ³

No RS endcaps: lost of $63\% J/\psi$ (90% for $|x_F|>0.2$)

No RS barrel: lost of 90% J/ψ (86% for $|x_F|>0.2$)

Half of RS in Z: lost of 74% J/ ψ (91% for $|x_F| > 0.2$)

hth

1.5

0.5

ň

θ

hth2

ECAL geometry and photons

 $\pi^0 \to \gamma$ misidentification probability

No projective geometry:

- interaction region is too long
- a small gain in ...
- Much more expensive and complex!

SPD VS. MPD

	SPD	MPD
Luminosity, cm ⁻² s ⁻¹	10 ³² (p-p), 10 ³¹ (d-d),	10 ²⁷ (Au-Au)
Maximal track multiplicity	~30	>100
Muon ID	Range system	no
Magnetic field in IP, T	1	0.5
π/K separation range, GeV/c	up to 8 GeV/c (FARICH), ~1.5 (TOF)	~1.5 (TOF)
Local polarimetry	BBC. ECal (barrel), ZDC	no
Maximal DAQ rate, kHz	3000	7

Expected performance

Expected performance: S/B

Expected performance: physics

Different inputs for gluon Sivers function

Expected performance: physics

Expected impact

 A_{LL} for prompt photons

 A_{LL} for J/ψ

	- 1
_	

Implementation phases

Creating of polarized infrastructure

SPD construction

Upgrade of polarized infrastructure

SPD upgrade 1st stage 2nd stage of operation of operation

Summary

The Spin Physics Detector at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized gluon content of proton and deuteron; in polarized high-Iuminosity p-p and d-d collisions. Complementary probes such as charmonia $(J/\psi$ and higher states), open charm and prompt photons will be used for that. Other polarized and unpolarized physics will be addressed in parallel.

► The SPD project has successfully passed developing of the physical program and the setup concept development phase. It is currently in the transition from working out technical solutions to building the first stage of the detector.

► We look forward to a long-term and fruitful interaction with the international SPD Detector Advisory Committee

