

The SPD setup and its elements

Alexander Korzenev, LHEP JINR

Meeting with DAC Feb 27, 2024

Experimental area of SPD

- All interior work (painting, ventilation, electricity, Wi-Fi and so on) in the SPD hall has been completed.
- The accelerator tunnel was isolated from the hall by concrete blocks (biological protection) in 2024.
- The trial run of the NICA accelerator is scheduled for early 2025.

Schematic view of the SPD setup

Stage I of experiment Basic set of subsystems Magnet, RS, Straw MM, BBC, BBC-MCP, ZDC Maybe central of part of ECal-endcap p-beam: √s ≤ 15 GeV, £ ≤ 10³⁰ s⁻¹cm⁻²

Range system Vertex detector end-cap

Zero degree calorimeter

Stage II: Fully assembled setup

- PID detector: TOF, FARICH
- ECal
- Silicone VD
- p-beam: $\sqrt{s}=27 \text{ GeV}$, $\mathcal{L}=10^{32} \text{ s}^{-1} \text{cm}^{-2}$ with interaction rate of ~4 MHz

Electromagnetic calorimeter

Magnet

Superconductive solenoid magnet

Cryostats of superconducting magnets of HEP experiments

Helium system

	Operating parameters	Unit
1	Cooling capacity (for 4.5 K)	100 - 130 l/h
	Cooling capacity (for 50 K)	150 W
2	Temperature of outlet flow	4.3 K (1.05 bar)
3	Temperature of inlet flow	4.5 K (1.15 bar)
4	Hydraulic resistance of the SC coil	0.1 bar
5	Cold weight	4000 kg
6	Maximum pressure in pipe	5 MPa
7	Heat load	60 - 80 W

Cryogenic system

Helium liquefier

Helium pipelines

Range System (RS)

- Purposes: µ identification, rough hadron calorimetry, iron return yoke of the magnet, mechanical support structure of the overall detector
- 20 layers of Fe (3-6 cm) interleaved with gaps for Mini Drift Tube (MDT) detectors
- The endcaps must withstand the ~ 100 tonne magnetic force
- Total mass ~1000 tons, at least $4\lambda_I$
- The design will follow closely the one of PANDA
- MDT provide 2 coordinate readout (~140 kch)
 - Al extruded comb-like 8-cell profile with anode wires + external electrodes (strips) perpendicular to the wires

Results of beam tests of RS prototype (10 ton, 4k ch)

Mini Drift Tubes (MTD)

Electromagnetic Calorimeter (ECal)

- Purpose: detection of prompt photons and photons from π^0 , η and χ_c decays
- Identification of electrons and positrons
- Number of radiation lengths 18.6X₀
- Total weight is 40t (barrel) + 28t (endcap) = 68t
- Total number of channels is ~23k
- Energy resolution is $\sim 5\% / \sqrt{E}$
- Low energy threshold is ~50 MeV
- Time resolution is ~0.5 ns

- 200 layers of lead (0.5 mm) and scintillator (1.5mm)
- 36 fibers of one cell transmit light to 6×6 mm² SiPM
- Moliere radius is ~2.4 cm

Setup of 4 modules

- Each module consist of 9 cells of 4x4 cm²
- All 36 cells were fully tested

Cell assembled of:

- 1.5 mm Scintillator
- 0.3 mm Lead
- 200 layers

Scintillator composition:

- Polysterene
- 1.5% Paterphenyle
- 0.05% POPOP

Test results with cosmic particles

- Light detection by new NDL SiPm Series EQR15 (intrinsic epitaxial layer as a quenching resistor (EQR))
- For now, old modules with a cross section of 4×4 cm², left over from MPD production, are being used
- A matrix form for new scintillator production (40×40×1.5 mm³) was ordered. A 4-set mold will produce 4 scintillator plate per minute.
- The relative energy resolution for MIP: dE/E=9.6% which corresponds to 240 MeV of electron signal and consistent with MC prediction
 - Spectra of all 36 cells were tested and give consistent results.

Detectors inside ECal (tracking + PID)

- All endcaps are loaded oneby-one presumably by hand
- No need to divide the endcap detectors into two halves

For the case when **assembling will not be allowed** in the experimental hall due to MPD runs, it can be done outside the aria.

Barrel of Straw Tracker (ST)

- Main tracker system of SPD
- Barrel is made of 8 modules with 30 double-layers oriented as $z, +3^{\circ}, -3^{\circ}$
- Maximum drift time of 120 ns for \emptyset =10mm straw
- Straw tubes are made of a PET foil that is ultrasonic welded to form a tube
- Spatial resolution of 150 µm
- Expected DAQ rate up to several hundred MHz/tube (electronics is limiting factor)
- Number of readout channels ~26k
- Extensive experience in straw production in JINR for several experiments: ATLAS, NA58, NA62, NA64; prototypes for: COZY-TOF, CREAM, SHiP, COMET, DUNE.

Power frame for the Straw-barrel

- Contract for the preparation of the conceptual design of the power frame was signed with CRISM earlier last year
- Engineers of CRISM were in charge for the development and production of the ECal power frame in MPD

- The frame will be made of carbon fiber composite material UMT49-12K-EP (Rosatom)
- A preliminary design, which takes into account all the tolerances imposed by the Technical Assignment, was prepared

Endcap of Straw Tracker (ST)

- One ST endcap contains 8 modules: X, +45°, -45°, Y
- One module contains 288 tubes in total, which are arranged in two layers shifted by half a tube
- Total number of tubes in two endcaps is 288 tubes × 16 modules × 2 endcaps = 9216 tubes
- The thickness of one module is 30 mm
- Eight coordinate planes are mounted together on a rigid flat table to form a 240 mm thick rigid block
- One straw is made by winding two "kapton" tapes forming a tube with $\emptyset = 9.56 \text{ mm}$

Progress on Straw-endcap prototype

Application of ST for the dE/dx analysis (PID)

Straw of SPD

- Number of primary ionized e- per straw is about the same as per pad in TPC => similar abilities for identification
- Using TDC+ADC for readout. See VMM3 as an example

<u>Ø=10mm straw</u>: S = **78 mm**²

Inner pads: 5mm × 12mm = 60 mm², Outer pads: 5mm × 18mm = 90 mm²

- For the 1-st stage of experiment ST will be the only PID detector in SPD for π/K/p.
- Only the low momentum region

Time-of-flight (TOF) detector

- Purpose: π/K/p discrimination for momenta ≤2 GeV, determination of t₀.
- Time resolution requirement <60 ps.
- Sealed Multigap Resistive Plate Chambers (MRPC) are the base option.
- DAQ electronics is under discussion. Analog of NINO chip v1 is in production.
- Number of readout channels is ~12.2k

Focusing Aerogel RICH (FARICH) detector

X-X center, mm

A.Barnyakov et al, NIMA732(2013)352

Momentum, GeV/c

ring radius, mm

Inner Tracker System of SPD

Micro pattern gaseous detector for the <u>1-st phase</u> of SPD

(commissioning by ~2028)

indrical MicroMegas (MM)

Purpose: temporary replacement for SVD, it serves to improve momentum resolution of tracks by about 2 times 3.5% (ST) $\rightarrow 1.7\%$ (ST+MM).

Ionization gap 3 mm, amplification gap 120 μ m, gas mixture Ar:C4H₁₀ = 90:10, gas gain 10⁴, pitch size 450 μ m, will be manufactured in LNP JINR, *spatial resolution* ~150 μ m.

Bulk technology, cylindrically bent, 1 super-layer at R = 5 cm with strip tilt angles 0°, ±5° and length of 90 cm, readout electronics at two ends, ~5.4k channels.

Silicon Vertex Detectors (SVD) for the <u>2-nd phase</u> of SPD

(one of two options, commissioning by ~ 2035)

Double-Sided Silicon Detector (DSSD)

Main purpose of the detector is to reconstruct the position of D-meson decay vertices (σ_z =76 μ m).

Silicon wafer size $63 \times 93 \text{ mm}^2$, thickness 300 µm, orthogonal strips on p⁺ and n⁺ sides, p⁺ pitch 95 µm, n⁺ pitch 282 µm, produced by ZNTC Russia, *spatial resolution 27 (81) µm* for p⁺ (n⁺) side.

DSSD modules are assembled in ladders with carbon fiber support, 3 layers (R=5, 13, 21 cm) in barrel 74 cm long, 3 layers in each endcap, readout electronics at two ends, \sim 108k channels.

Monolithic Active Pixel Sensors (MAPS)

Main purpose of the detector is to reconstruct the position of D-meson decay vertices ($\sigma_z=51 \ \mu m$).

Silicon wafer size $30 \times 15 \text{ mm}^2$, thickness 50 µm, pitch 28 µm, 512×1024 pixels, sensor and FEE sections are integrated in a single chip, so far is not produced in Russia, *spatial resolution 5 µm*.

MAPS chips are assembled in staves with carbon fiber support, 4 layers (R=4, 10, 15, 21 cm) with the external layer 127 cm long, FE electronics is part of the chip, $\sim 10^9$ pixels for readout.

5 4 5 6 7 6 P_T, GeV/c

Silicon Vertex Detector (SVD)

Progress in developing a cylindrical MM prototype in LNP

- Cylindrical MMs have so far been produced only in Saclay for CLASS12, R=10 cm.
- MM production stages for SPD (**R=5 cm**):
 - Photolithography to produce RO board
 - Bending and fixation on template
 - Gluing force elements (longbeams, arcs)
 - Gluing cathode plain and hermetization
 - Finalization (cut-out technological detail, add gas connectors, etc)
- Stable signal ($U_{gain}=525V, G=10^4$)

LNP, Desember 2023

Tile height 55.7 mm 25 tiles in sector (similar to STAR EPD)

Progress on Beam-Beam-Counter (BBC)

Currently, the selection of materials for the build of 7 detector prototype sector tiles is underway

2000

Progress on Zero Degree Calorimeter (ZDC)

- Energy resolution for neutrons $(50 \div 60)\% / E \oplus (8 \div 10)\%$. Time resolution $150 \div 200$ ps. Neutron entry point spatial resolution 10 mm.
- Beam pipe sections for the ZDC cite are received in JINR October. Now under tests by vacuum group. The place for ZDC is fine and well acceptable for installation.
- For the initial test a single ZDC plane with 31 scintillator tile (no tiles in the corners) is being developed.
- DAQ electronics: A5202 based on Citiroc-1A chip produced by WeeROC (not available). Homemade discrete electronic board for the 1st stage.

Status of the development

- is ongoing well (proven technology or successful R&D)

- open issue (to be defined or developed), at a conceptual level now

	Magnet (phase I)	RS (phase I)	ECal	Straw tracker (phase I)	TOF	FARICH
Power frame (mechanics)	contract for development of documentation	communication with manufacturer has begun		contract for development of conceptual design		
Active part of the detector	based on the PANDA magnet		interest from Tsinghua Uni		interest from Tsinghua Uni	
Readout & control electronics		final phase of development				

	MicoMegas (phase I)	DSSD	MAPS	BBC (phase I)	BBC-MCP (phase I)	ZDC (phase I)
Power frame (mechanics)		provided by the group			to be confirmed by accelerator team	
Active part of the detector	R&D in progress					R&D in progress
Readout & control electronics				purchased		

Conclusions

- NICA collider will start operation in heavy ion mode in early 2025
- Possibility of running (polarized) proton beams in NICA is currently being studied
- SPD (Spin Physics Detector) is a universal facility with the primary goal to study unpolarized and polarized gluon content of *p* and *d*
 - 4π detector will be equipped with silicon detector, straw tracker, TOF and FARICH for PID, calorimetry, muon system and monitoring detectors
- SPD Technical Design Report was released at the beginning of 2023
- More information could be found at http://spd.jinr.ru

	Creating of polarized infrastructure		Upgrade of infrast	f polarized ructure	
0	+2	+4	+6	+8	years
SPD construction		ction 1st of op	SPD uj stage eration	ograde 2nd of op	l stage eration

backup

- Gluon TMD: Open charm (D^{0,±}) production $\int_{0}^{0} \int_{0}^{0} \int$
 - Silicon detector (DSSD or MAPS)
- Identification of kaon from D-decay
 - TOF and FARICH

- and scintillator
- Thickness of 18.6X₀

0.08

0.06

0.04

- Universal 4π detector 6.6 m high and 7.7 m long
- Superconductive solenoid providing 1T field
- Tracking and vertexing provided by Silicon Vertex Detector and Straw Tracker
- Hadron PID by TOF and Aerogel detectors
- Photon and e[±] selection by ECal
- Muon identification by Range System
- Local polarimetry and luminosity control by BBC, MCP and ZDC detectors
- Luminosity of 10^{32} cm⁻²s⁻¹ at $\sqrt{s}=27$ GeV results in interaction rate of 4 MHz for protons

- Single-span building with overall dimensions of 32 × 72 m², which is divided into
 - unloading and production area located at ground level.
 - concrete-protected experimental area located 3.2 m below ground level.
- One-pipe-section of 30 m long, where 9 m of this section can be allocated for detectors.
- Weight of the experimental setup is limited to 1200 tons.

Data Acquisition System (DAQ)

- Bunch crossing every 76 ns → crossing rate 12.5 MHz
- At maximum luminosity of 10³² cm⁻²s⁻¹ the interaction rate is 4 MHz
- No hardware trigger to avoid possible biases
- Raw data stream 20 GB/s or 200 PB/year
- Online filter to reduce data by oder of magnitude to ~10 PB/year

Data volume vs time

- *Preparation for the experiment.* Monte Carlo simulation from 2024 to 2028 will provide 2 PB per year. Total per stage: *10 PB*.
- *Stage I:* running at low luminosity of the NICA collider. Monte Carlo simulation and real data taking from 2028 to 2030 will provide 4 PB per year. Reprocessing: 2 PB per year. Total per stage: *18 PB*.
- *Upgrade of the setup* for operation at high luminosity. Monte Carlo simulation from 2031 to 2032 will provide 2 PB per year. Reprocessing: 2 PB per year. Total per stage: *8 PB*.
- *Stage II:* running at maximum design luminosity of the NICA collider. Monte Carlo simulation and real data taking from 2033 to 2036 will provide 20 PB per year. Reprocessing: 10 PB per year. Total per stage: *120 PB*.

SPD compared to other spin experiments

10

100

10²⁸

1

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	$p extsf{-}p^\uparrow, d^\uparrow$	p - p^{\uparrow}
& polarization	d^{\uparrow} - d^{\uparrow}				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (<i>ep</i>)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			$\sim \! 10 (p - p)$	
Physics run	>2025	running	>2030	>2025	>2025

Main present and future gluon-spin-physics experiments

- Access to intermediate and high values of *x*
- Low energy but collider experiment (compared to fixed target). Nearly 4π coverage
- Two injector complexes available ⇒ mixed combinations p[↑]-d and p-d[↑] are possible

 \sqrt{s} , GeV

Luminosity reduction due to displacement of IP from the SPD center

- Formation of polarized proton beams in the NICA collider is presently under study
 - $T_1 \approx 2h, T_2 \approx 1h, \tau_L \approx 6h, \tau_P \approx 3 day$
 - Effective luminosity $L_{eff} \approx 0.6L_0$, maximum luminosity $L_0 \approx 10^{23} \text{ cm}^{-2}\text{s}^{-1}$
- All bunches in one ring will have the same polarization (~70%)
- Spin navigator (SN) is based on weak solenoids with $BL \le 0.6$ Tm
- It takes ~1s for Spin-Flipper based on SN to reverse the polarization

Operation mode with spin flippers

- **xxx** spin-flipper switching-on, no data taking - spin-flipper switching-off, no data taking

Calorimeter suspension scheme in CMS/LHC

Сравнение размеров установок **SPD** и **MPD**

ECal installation

Example of MPD experiment

First, the housing is installed, and then the cells are installed one by one

Example of CMS experiment

The housing and cells are rolled up as a single unit

Electromagnetic Calorimeter at NICA/MPD

Igor Tyapkin, Boyana Dabrowska CHEF 2017, Lyon, France 03/10/2017

(Photons beam with energy 100MeV).

Distribution of the number of clusters vs angle θ (Photons beam with energy 500MeV).

Electromagnetic Calorimeter at NICA/MPD

Igor Tyapkin, Boyana Dabrowska CHEF 2017, Lyon, France 03/10/2017

View of the some modules of the no projective geometry in the Z plane

View of the some modules of the projective geometry in the Z plane.

Монтаж ТОГ по аналогии с магнитом

(не зависит от наличия ECal)

Монтаж бочки **Straw**

Подготовили в ЦНИИСМ в прошлом году

Монтаж в бочку ТОГ

Нужны направляющие, ролики и т.д.

Прямолинейный участок SPD, который можно будет использовать для тестирования детекторов

MoU signed

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 2 NRC "Kurchatov Institute" - PNPI, Gatchina 3 Samara National Research University (Samara University), Samara 4 Saint Petersburg Polytechnic University St. Petersburg 5 Saint Petersburg State University, St. Petersburg 6 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 7 Tomsk State University, Tomsk 8 Belgorod State University, Belgorod 9 Lebedev Physical Institute of RAS, Moscow 10 Institute for Nuclear Research of the RAS, Moscow 11 National Research Nuclear University MEPhI, Moscow 12 Institute of Nuclear Physics (INP RK), Almaty **13 Institute for Nuclear Problems of BSU, Minsk**

14 NRC "Kurchatov Institute", Moscow (NRC KI)15 Higher Institute of Technologies and Applied Sciences, Havana