

Study of the MPD-TPC detector performance in pp collisions

Katherin Shtejer Díaz On behalf of the MPD Collaboration

Detector Advisory Committee, January 2018. VBLHEP, JINR, Russia

1

- Introduction
- Efficiency of event reconstruction in MPD-TPC
- Multiplicity distribution (model comparison)
- Primary vertex position
- $p_{\rm T}$ resolution
- Tracking efficiency
- Reconstructed p_{T}
- Lambda baryon reconstruction

Introduction

PHSD model (in **HSD** mode) was used to generate events **HSD** mode => without partonic QGP phase.
High energy inelastic hadron – hadron collision in HSD is described by
FRITIOF string model (including PYTHIA). The description of *p*+*p* reactions is almost equivalent to the Lund String model.

- 100000 events
- Point-like interaction
- Primary* and secondary tracks
- Analyzed TPC Kalman tracks and TOF matched tracks
- The reconstructed tracks are associated with the primary MC particle that 'caused' the reconstructed track
- Number of Hits > 20

* **Primary particles** are defined as prompt particles produced in the collision including products of strong and electromagnetic decays, as well as weak decay of charmed and beauty particles except feed-down products from strange and other secondary particles.

Multiplicity at $|\eta| < 1.3$

Reconstructed track distribution in TPC with HSD and PHYTHIA8 @ 20 GeV.

Pythia results obtained by A. Zinchenko

Multiplicity from p_{T} density distributions at $ \eta < 1.3$	
TPC	
HSD	PYTHIA
3.09	4.46

- Pythia predicts higher multiplicity than HSD in TPC for pp @ $\sqrt{s_{NN}}$ = 20 GeV

*p***_T density distribution** @ 20 GeV with HSD and

PHYTHIA8, normalized by number of events.

- The accurate position determination of the primary vertex is essential for p_T reconstruction. It depends on the number of tracks and the p_T of those tracks.
- The precision of primary vertex coordinates is better for large track multiplicities $(\sigma_{vtx} < 2mm \text{ for nTracks } > 6).$

 $p_{\rm T}$ resolution

Tracking efficiency vs. p_{T}

All particles

Tracking efficiency vs. p_{T}

protons, pions, kaons

Tracking efficiency vs. η

Reconstructed p_{T}

 $p_{\rm T}$ distribution of reconstructed tracks in:

The reconstruction efficiency in TOF as defined above, is > 80% in the p_T range $0.3 \div 1.6$ GeV/c. Different factors contribute to the inefficiency: TOF acceptance and dead spaces, decays of pions and kaons, TPC-TOF mismatch (especially at low p_T), etc. This should be investigated in detail further on.

Multiplicity for different p + p collision energies

The multiplicity values were obtained from the $p_{\rm T}$ and pseudorapidity density distributions, $(\frac{dN}{dp_T})$ vs. $\sqrt{s_{NN}}$ and $(\frac{dN}{d\eta})$ vs. $\sqrt{s_{NN}}$, $(|\eta| < 1.3)$

Invariant mass spectrum of (p, π) pair

- The performance studies of MPD, in its first stage, include the simulations of p+p collisions to estimate the feasibility of TPC as the main tracking detector for event reconstruction.
- Simulations indicates that the pseudorapidity and p_T density distributions as well as the multiplicity of charge hadrons from p+p collisions can be measured in MPD at collision energies $\sqrt{s_{NN}} = 4 \div 20$ GeV.
- The primary vertex position may be estimated with a precision of 2 mm in events of more than 6 reconstructed tracks in TPC.
- The p_T resolution is better than 2.6% at p_T range: 0.1 ÷ 1.5 GeV/c.
- The reconstruction of Λ⁰ baryon from p+p collisions has the advantage of a weak p,π⁻ combinatorial background.

BACKUP

$p_{\rm T}$ resolution

The p_{T} resolution is not affected by the number of tracks.

Tracking efficiency vs. p_{T}

Difference between $p_{T,rec}$ and $p_{T,MC}$ Only primary protons, pions, kaons

