Детекторы триггерных систем экспериментов BM@N, SRC и MPD

Сергей Седых

(отчёт о научной деятельности за 5 лет)

22 февраля 2024

Presentation order:

- 1) Fast Forward Detector of the MPD
- 2) Trigger detectors of BM@N
- 3) Trigger detectors of SRC at BM@N

FFD concept and requirements

FFD is one of the trigger subsystems.

FHCal is also expected to be integrated in the trigger (slower but with larger acceptance).

TOF can also be considered.

Fast interaction trigger & T0 detector for TOF

Trigger is based on coincidence of signals in two sub-detectors t_{E} - t_{W} => localization of interaction point ΔZ < 3 cm

Condition on multiplicity of hits in each arm (80 cells in each arm)

Offline t_0 time for TOF better than 50 ps

Expected trigger efficiency

- Efficiency is ~ 100% in central and semi-central collisions
- " at least one-channel per side" is a preferred option for FFD triggering

More simulation results in:

Riabov V:	Fixed target trigger efficiency,	Cross-PWG 2023-02-22, 2023-05-30, 2023-11-28
	Light collision systems,	Cross-PWG 2023-07-25
	Trigger mass productions,	Cross-PWG 2023-06-24
	PHQMD trigger efficiency,	Cross-PWG 2022-09-06
Ivanishev D:	Trigger studies in the collider mode,	Cross-PWG 2023-08-22

FFD team:

Vladimir Yurevich – leader of the FFD project

- Sergey Sergeev– electronics and Detector Control SystemViktor Rogov– electronics and cablesPavel Grigoriev– electronics and software
- Vladimir Tikhomirov mechanics and cooling Vitaliy Azorskiy – mechanics Aleksander Timoshenko – mechanics
- Nikita Lashmanov tests and study of the FFD performance, FFD implementation in MpdRoot
- Sergey Sedykh tests and study of the FFD performance

FFD Mechanics

Design of FFD sub-detector

Tools for FFD installation

Current status: All mechanics is ready for installation in the MPD

FFD Modules

Viktor Rogov Vladimir Yurevich

FEE board

All 2 x 20 FFD modules are produced

FFD cooling system

Temperature inside modules

No air flow	Air flow 40 <i>l/min</i>
+8° C	+4° C

Air of room temperature was used in the tests We expect that during MPD operation a flow of cool and dry air (nitrogen) will be used.

Interface for temperature monitoring

Vladimir Tikhomirov Sergey Sergeev

Status:

all components available, checked and being used for testing modules and electronics

Readout electronics for detector control and calibration

Sergey Sedykh Nikita Lashmanov

Current status:

- all parts are available.
- multiplexers are tested

Not ready:

- chain readout of several CAEN N6742
- customized interface

High voltage system

High voltage interface

Current status: ready for testing sets of modules

Read-out and trigger electronics

TDC: 10 modules TDC72VHL, ready (DAQ group)

Fan-out & LV: ready (Dec.2023 – Jan.2024)

SPM (Signal Processing Module): 2 out of 8 ready for testing

VPM (Vertex Processing Module): design finished, all parts available

Tests with the laser system

Sergey Sedykh Nikita Lashmanov

Uniformity of 2 x 60 splitting (11.2018) within ±20%: East 35/60, West 29/60

Quadrants comparison and cross talk (12.2018) small diagonal cross talk

Uniformity of split within FFD module (07.2020)

Comparison of TDC channels (08.2020)

Jitter in BM@N trigger module fan-out (09.2020)

Different HDMI cables, type and length (10.2020)

Check of remade HDMI cables (12.2020)

Different FEE amplification (12.2020)

Test of all East modules (04.2021) 2 out of 20 had some faults

Test of multiplexers (08.2021)

Test of all West modules (10.2021) 2 out of 20 had some faults

Plans for spring-summer 2024: test FFD fan-outs, SPM, VPM

Special stand for tests of FFD with cosmic muons

A special stand was created in 2018 for test measurements with the FFD modular arrays and all FFD sub-systems to study FFD operation and performance

Production of the scintillation planes

A scheme of the stand for tests with cosmic muons

Each scintillation plane has dimensions $50 \times 50 \times 1$ cm³ and consists of 10 strips. Crossing of the strips of X- and Y- planes on the top and bottom of the stand provides information about direction of incoming cosmic muons. The scintillation light is detected with two SiPMs placed on the strip's ends.

The stand sub-systems:

- Four scintillation planes with electronics
- Trigger module (FPGA Altera Cyclon V)
- HV crate
- readout electronics (TDC72VHL)
- readout electronics (digitizers CAEN mod.N6742)
- Laser system
- Control system

Planned Tests for 2024

- Combined time resolution by group of modules
- Laser vs Cosmic muons pulse height
- Test of readout and trigger electronics
- Long-term test (need temperature control)
- Cable and fibers lay-out is non-trivial

Configuration of BM@N detector in ¹²⁴Xe run (Jan. 2023)

- GEM detectors

Vacuum Beam Pipe (1)
BC1, VC, BC2 (2-4)
SiBT, SiProf (5, 6)
Triggers: BD + SiMD (7)
FSD, GEM (8, 9)
CSC 1x1 m² (10)
TOF 400 (11)
DCH (12)

□ Magnet SP-41 (0)

- TOF 700 (13)
- ScWall (14)
- 🗖 FD (15)
- 🗖 Small GEM (16)
- CSC 2x1.5 m² (17)
- Beam Profilometer (18)
- **FQH** (19)
- □ FHCal (20)

Trigger signals (used or considered)

Trigger type	Trigger logic	Two thresho
Beam Trigger (BT)	BT = BC1 * VC _{veto} * BC2	trigger logic one was suff
No Interaction Trigger (NIT)	NIT = BT * FD	Adding SiME
Min. Bias Trigger (MBT)	MBT = BT * FD _{veto}	data taking i
Centrality Trigger 1 (CCT1) Centrality Trigger 2 (CCT2)	CCT1 = BT * BD(>n1) * SiMD(>m1) CCT2 = MBT * BD(>n2) * SiMD(>m2)	In addition, e FHCal modu neutron part) potential trige signals; data

Two threshold levels were prepared in trigger logic for multiplicity detectors, one was sufficient.

Adding SiMD in the trigger was tested but not used during data taking in Xe run.

In addition, energy deposition in FHCal modules (all or only the neutron part) was also considered as potential trigger signals; data were collected for evaluation.

Beam pipe and detectors upstream of the target

Kubankin A. and Belgorod team

Piyadin S. and Co.

Trigger multiplicity detectors in the target area

Экран Al фольга 50 мкм

Silicon Multiplicity Detector (SiMD): 64 strips, 525 µm thick

Barrel Detector (BD):

- 1 40 scintillation strips, 150 x 7 x 7 mm, BC418
- 2 the board with SiPMs, Sensl C-series, 6 x 6 mm
- 3 the board of front-end electronics.

Beam

Design and read-out of BC1, VC

Detector	PMT	Radiator
BC1	Hamamatsu R2490-07	Scint. BC400B 100 x 100 x 0.25 mm ³
VC	Hamamatsu R2490-07	Scint. 113 x 113 x 4 mm³ Ø 25 mm

"Air"-lightguides from Al-mylar

Design and read-out of BC2

Vacuum components made by the Belgorod group

Additional read-out of LVDS signals from FEE into TDC72VHL. Both, TQDC and TDC provide high resolution timing.

Indication of radiation damage in BC1 and BC2

More pronounced in BC2

Might require scintillator change during the run

Cherenkov prototypes are hard to test without heavy ion beams

No visible loss in transparancy of the BC2 scintillator. Study is planned by the LPI RAS group

Monitoring of BC stability during the run (some increase in HV was needed)

BC1 and BC2: Amplitude stability in spill. Offline resolution

- stable at 2-4 % level
- can be sensitive to (X,Y) beam movement during spill
- next step is to add Beam Tracker into analysis

Offline amplitude resolution

Detector	σ (%)
BC1	4.8
BC2	7.1

Good resolution of BTr3 is very important for offline rejection of upstream interactions

$$\Delta t_{ij} = t_i - t_j$$
$$\sigma_{ij}^2 = \sigma_i^2 + \sigma_j^2$$

i,j: BC1, BC2, FD1

Time resolution of BC1 and BC2

Measured with additional FD1 counter, placed behind the FHCal hole. FD1 is similar to BC1 in design, PMTs and scintillator (prepared by V.Velichkov).

Each of BC1 and BC2 have \leq 45 ps resolution. Combined, they can provide \leq 30 ps resolution.

Resolution of BC2 is good enough, but poorer than expected for this type of PMT.

Detectors	$\sigma_{_{ij}}$, ps		Detectors	$\sigma_{_i}$, ps	
BC1 - BC2	57		BC1	43	
BC1 - FD1	61		BC2	38	_
BC2 - FD1	58		FD1	44	
(BC1&BC2) - FD1	52		(BC1&BC2)	28.2	
		,		28.5	

FD design and response

X 13

11

Radiator 150 x 150 mm²

Air-lightguide

from Al-mylar

PMT

-13 -8₋₂₉ Non-stable base for XP2020 at the beginning of the spill

Significantly better resolution with scintillator radiator

Less than expected photoelectron statistics with the quartz radiator

Quartz hodoscope has 2% resolution (FHCal group) and will be used in offline analysis

PMT	Radiator	σ/A (%)
XP2020	Scint. 0.5 mm	6.0
XP2020	Quartz 1 mm	17.0
XP2020/Q	Quartz 1 mm	11.7
R2490-07	Scint. 0.5 mm	9.1 → 6.7 → 5.3

Minimum Bias Trigger (MBT = BT • FD_{veto})

Even with conservatively low threshold in FD amplitude, typical ratio of N(MBT) / N(BT) for 2% target was ~0.04, i.e. with significant background

Good linearity with Empty, 1%, 2% targets; N(MBT) / N(BT) for "empty target" ~0.028

Material	Thickness, mm	Interaction probability %
Si BeamTracker	0.175	0.30
Ti vacuum window	0.08	0.17
FD, black tape, etc.	0.5	0.94
Air	150	0.21
FD, scint.	~0.1	~0.2
BC2, scint.+Mylar	~0.04	~0.1
		Total ~1.9

Response of Barrel Detector and trigger CCT1 = BT • (BD \geq n)

27

Response of Si Multiplicity Detector

Xe Beam 3 GeV/n, data taking with MBT trigger

- all 64 channels are working
- clear correlation of hits multiplicity in SiMD and BD

- opening for the beam. Dia. 50 mm
- 8 trapeziodal detectors
- 64 strips in total
- 525 μm thick

First look analysis by N. Lashmanov

Group of N.Zamjatin

Central collisions trigger CCT2 = MBT • (BD \geq n)

The backgrounds in triggers MBT and CCT1 are suppressed when MBT and CCT1 are combined in CCT2

Some non-linearity with 1% and 2% targets remains in CCT2, but becomes much smaller

Correlation plots in various detectors were used in order to confirm the validity of the trigger

Estimated centrality of collected events ~70%

N(CCT2) / N(BT) at $BD \ge 4$

"Regular" mix of triggers used in data taking

Trigger	Downscaling factor	Fraction, %
BT	2000	3
MBT	35	7
CCT1	230	5
CCT2	1	85

BM@N trigger 2023 Xe run: summary and outlook

In general, the trigger system can be used in the next run (assuming, Xe 2024) without major changes.

- *BC2:* replace scintillator with a fresh one;
 - prepare mount for different PMT (BC1 type R2490-07, this will remove negative tail overshoot).
- *FD:* prepare stable base for XP2020/Q and make another test with the quartz radiator.
- *BD:* major redesign for Bi runs: two halves, more inner Pb-shielding, shorter scintillation strips
- *SiMD:* not needed used in heavy ion beams, complete analysis of the test data, keep for future runs with light ion beams.
- *Beam trigger:* additional threshold on BC1 amplitude in order to veto pile-up of beam ions.
- *CCT1, CCT2:* no need to have two thresholds in the Barrel Detector.
- *MBT:* add second threshold on FD amplitude, "soft" threshold in MBT and "hard" in CCT.

Prototypes with Cherenkov radiators in BC1, BC2 and FD: design and prepare for testing in the next run.

SRC at BM@N setup in the 2022 run ${}^{12}C + LH2$

Main reactions of interest:

¹²C(p,2p) ¹²C(p,2p)¹¹B ¹²C(p,2p)¹⁰B ¹²C(p,2p)¹⁰Be

Trigger detectors:

BC1, T0-1, T0-2, VC BC3, BC4, BC5 TofCal_L, TofCal_R

Beam trigger (BT): BC1 • T0-1 • T0-2 • !VC

ARM-AND trigger: BT • TofCal_L • TofCal_R

Fragment trigger (not used): BT • !BC3 • !BC4 • !BC5

Laser 10 Hz

Typical Trigger Mix: *ARM-AND* + *BT*/700 + *Laser*

Spill ~2.5 s, Beam intensity ~5 \cdot 10⁵/ spill, Event rate 3-5k/spill Background ¹²C events in BC3 in ARM-AND trigger ~20% was considered acceptable

BC3-BC5 Preparation, Nov. 2021 – Feb.2022

T.Atovullaev, K.Alishina with help from O.Gavrishyuk

- Silicon glue RTV615 Momentive
- Light guides made in TAU
 - Epoxy Polytec EP

Pre-Run tests: response to cosmics,

PMT stability with Laser (100 Hz) + LED (10Hz–10MHz), several "Dry runs" with Laser trigger and full DAQ read-out.

BC3-BC5 amplitude resolution

PMT: R7724-10 Scintillator: BC408

BC3, BC4: 100 x 100 x 3 mm³ BC5: 100 x 100 x 5 mm⁵

As expected, BC3-5 show clean "C","B" separation in both, online data taken with CAEN and detailed offline TQDC analysis performed by T.Atovullaev and Stepan Cherepanov (MSU student)

Plan to check possible improvement if one adds XY non-uniformity correction using tracking

T0-1, T0-2 time resolution

Installed in the beamline

MCP PMT: Photonis XPM85112/A1 Q400

Scintillator: BC418 Size: 60 x 60 x 1 mm³

Unexpectedly non-uniform light collection, and low photostatistics

Time resolution (ps):

T0-1	65 ± 5
T0-2	55 ± 5
T0	46 ± 5
BC3	48 ± 5
BC4	69 ± 3
BC5	73 ± 3
T0 + E	3C3 ~30

Thank you for your attention