Production of protons, deuterons, tritons in argon-nucleus interactions at 3.2 AGeV

L.Kovachev ${ }^{1,2}$,M.Kapishin ${ }^{1}$ V.Plotnikov ${ }^{1}$, Yu.Petukhov ${ }^{1}$, I.Roufanov 1, A.Zinchenko ${ }^{1}$

1. VBLHEP Joint Intitute for Nuclear Research, Russia
2. IMech Bulgarian Academy of Sciences, Bulgaria

Analysis of p,d,t production in 3.2 AGeV argon-nucleus interactions

The results of the analysis were presented at the Analysis and Detector meeting in March 2024 and at the 11th Collaboration meeting in November 2023 (L. Kovachev).
Intermediate steps analysis were presented at previous Collaborations and Analysis meetings
(L. Kovachev, V. Plotnikov, M. Kapishin).

Answers of questions of the previous analysis meetings:
https://indico.jinr.ru/event/4165/attachments/17543/32734/Answers_pdt_analysis.pdf
Related analysis notes:

[^0]
m^{2} spectra of positive particles produced in argon-nucleus interactions

The background integral under the $\mathrm{p}, \mathrm{d}, \mathrm{t}$ mass-squared windows taken from mixed events and from the fitting of the m^{2} spectra by a linear function is calculated as systematic uncertainty and is under 5%.

Phase space coverage for deuterons

The yields are calculated as weighted averaged of the results obtained with ToF-400 and ToF-700 in bins of pT and y .

The systematic error of the combined result of the ToF-400 and ToF-700 measurement is calculated as half of the difference of the p, d, t yields measured in bins of rapidity y in the ToF400 and ToF-700 detectors.

Visualization of the DeDx distribution with the cut applied to eliminate helium-4 contribution.

Our study found that using the 3-medians approach is best. It drastically reduces single-charged particle outputs by 99%.

Switching from two medians to three significantly impacts particle outputs: double-charged particles decrease by 9%, and single-charged particles decrease by 60%. Switching from three to three and a half medians has minimal impact on single-charged particles but decreases doublecharged particles by 7%.

Reconstruction Efficiency for protons for TOF400 and TOF700

The reconstruction efficiency takes into account selection cuts, matching criteria for tracks in outer detectors dependent on particle momentum.
Its practically impossible to separate acceptance, track searching efficiency, matching efficiency to outer detectors, vertex selection efficiency.

Trigger efficiency for argon-nucleus interactions as a function of the event centrality estimated from the simulation.

The analysis aims to separate more central from more peripheral events. We can refer to them as classes up to 40% and above 40% centrality

Unexpected Behavior in dN/dy Rapidity Spectra of protons in Ar+Al Interactions

Proton data relative to models: a larger fraction of protons can originate from inelastic interactions compared to spectator and elastically scattered protons (like $n+p->p+n, n+p->p+p+p i-$, etc).

Results: Coalescence parameter \boldsymbol{B}_{2}

The BM@N result is calculated as a weighted average of $\mathrm{Ar}+\mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{Pb}$

Results: Coalescence parameter \boldsymbol{B}_{3}

The BM@N result is consistent with the main trends observed in other experiments

Results: Coalescence source radii

The coalescence radii calculated from B2 and B3 for deuterons and tritons produced in Ar+A interactions (centrality 0-40\%) align with values ranging from 3 to 3.5 fm

Results: $N_{p} \cdot N_{t} / N_{d}^{2}$ ratio

The result of the BM@N experiment fall between the values obtained from experiments done at lower and higher energies.

Thank you for your attention !

BACKUP

Truncated mean dE/dx for 3, 4, 5 and 6 hits tracks

Slices in energy loss in βy distributions are fit and the the median value from the fit is used for normalisation

Ar + Sn: Difference in yields calculated in ToF-400 and ToF-700 and normalized to the mean value of yields in bins of (y, pT). Centrality $0-40 \%$. Statistical fluctuations in (y, pT) bins contribute to the spread.

Ar+Sn: Difference in yields calculated in ToF-400 and ToF-700 and normalized to the mean value of yields in bins of y (horizontal axis). Centrality $0-40 \%$. These values are taken as the systematic uncertainty.

Hit multiplicity in Barrel detector in Data vs MC in bins ot pT (left plots) and rapidity (right plots)

Track multiplicity in Data vs MC in bins ot pT (left plots) and rapidity (right plots)

Comparison between experimental data and MC

Selection Criteria for experimental data and MC

Number of hits in 6 GEM per track >3
Tracks from PV: -3.4 < ZPV - Z0 < 1.7 cm
Momentum range of tracks for ToF-400 (ToF-700):
p>0.5 (0.7) GeV/c
Distance from a track to PV in the X-Y plane: dca< 1 cm
Distance of extrapolated tracks to CSC (DCH) and ToF400 (ToF-700): \mid residX, $\mathrm{Y} \mid<3 \sigma$ of hit-track residual distribution

Trigger Efficiency

The efficiency to get a trigger signal based on multiplicities of fired channels in the BD (SiMD) detectors etrig was calculated for events with reconstructed protons, deuterons and tritons using experimental event samples recorded with an independent trigger based on the SiMD(BD)detectors:

$$
\operatorname{\varepsilon trig}(B D \geq m)=N(B D \geq m, \operatorname{SiMD} \geq n) / N(\operatorname{SiMD} \geq n),
$$

where m and n are the minimum number of fired channels in BD and SiMD varied in the range from 2 to 4. The dependences of the trigger efficiency on the track multiplicity in the primary event vertex and the X/Y vertex position were taken into account. The efficiency for the combined BD and SiMD triggers was calculated as a product of the BD and SiMD trigger efficiencies.

Cross sections and multiplicities of $p, d t$

The differential cross sections $d^{2} \sigma_{p, d, t}\left(y, p_{T}\right) / d y d p_{T}$ and multiplicities $d^{2} N_{p, d, t}\left(y, p_{T}\right) / d y d p_{T}$ of protons, deuterons and tritons produced in $\mathrm{Ar}+\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{Pb}$ interactions are calculated in bins of ($\mathrm{y}, \mathrm{p}_{\mathrm{T}}$) according to the formulae:

$$
d^{2} \sigma_{p, d, t}\left(y, p_{T}\right) / d y d p_{T}=\sum\left[d^{2} n_{p, d, t}\left(y, p_{T}, N_{t r}\right) /\left(\varepsilon_{t r i g}\left(N_{t r}\right) d y d p_{T}\right)\right] \times 1 /\left(L \varepsilon_{d, p, t}^{r e c}\left(y, p_{T}\right)\right)
$$

$$
d^{2} N_{p, d, t}\left(y, p_{T}\right) / d y d p_{T}=d^{2} \sigma_{p, d, t}\left(y, p_{T}\right) /\left(\sigma_{\text {inel }} d y d p_{T}\right)
$$

where L is the luminosity,
n - the number of reconstructed $\mathrm{p}, \mathrm{d}, \mathrm{t}$ in intervals dy and dp_{T},
$\varepsilon_{\text {rec }}$ - the efficiency of the $\mathrm{p}, \mathrm{d}, \mathrm{t}$ reconstruction,
$\varepsilon_{\text {trig }}\left(N_{t r}\right)$ - the track-dependent trigger efficiency,
$\sigma_{\text {inel }}$ the cross section for minimum bias inelastic Ar+A interactions. The cross
sections for inelastic $\mathrm{Ar}+\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{Pb}$ interactions are taken from the predictions of the DCM-SMM model
The cross sections and multiplicities are evaluated for two classes of a collision centrality: 0-40\% and 40-100\%

Systematic uncertainties

The systematic uncertainty of the p, d, t yields and $\varepsilon_{\text {rec }}$ in every p_{T} and y bin is calculated as a root square of quadratic sum of uncertainties coming from the following sources:

Sys1: systematic uncertainty of the central tracking detector efficiency.
Sys2: systematic uncertainty of the matching of central tracks to outer trackers and ToF detectors
Sys3: systematic errors of the reconstruction efficiency due to the remaining difference in the X / Y primary vertex distribution in the simulation relative to the experimental data.

Sys4: systematic errors of the background subtraction under the p, d, t signals in the mass squared spectra of identified particles.

Sys5:Systematic uncertainty calculated as half of the difference of the $\mathrm{p}, \mathrm{d}, \mathrm{t}$ yields measured in bins of rapidity y in the ToF-400 and ToF-700 detectors

Sys6:Systematic uncertainty in event centrality weights

	$\begin{gathered} \text { Ar+C } \\ \% \end{gathered}$	$\begin{gathered} \text { Ar+AI } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ar}+\mathrm{Cu} \\ \% \end{gathered}$	$\begin{gathered} \text { Ar+Sn } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ar}+\mathrm{Pb} \\ \% \end{gathered}$
protons Total	18	9	11	16	13
deuterons Total	33	23	21	20	23
tritons Total	44	23	21	21	23

Transverse mass spectra of protons, deuterons, tritons produced at rapidity $=1.4$ in $\mathrm{Ar}+\mathrm{A}$ interactions with centrality $0-40 \%$

$$
m_{T}=\sqrt{m_{p, d, t}^{2}+p_{T}^{2}}
$$

The spectra are parameterised by exponential function as:

$$
1 / m_{T} \cdot d^{2} N / d y d m_{T}=\frac{d N / d y}{T_{0}\left(T_{0}+m\right)} \cdot \exp \left(-\left(m_{T}-m\right) / T_{0}\right)
$$

where fitting parameters are the integral of the m_{T} spectrum, $\mathrm{dN} / \mathrm{dy}$, and the inverse slope, TO .

Rapidity spectra dN/dy of protons produced in Ar+A interactions with centrality $\mathbf{0 - 4 0 \%}$ and $\mathbf{4 0 - 1 0 0 \%}$. The results are integrated over p_{T}

The models reasonable describes the experimental results in the forward y range. At mid-rapidity the models under-estimate the data for interactions with the targets heavier than the carbon.

Rapidity spectra $d N / d y$ of deuterons produced in Ar$+A$ interactions with centrality $0-40 \%$ and $40-100 \%$. The results are integrated over p_{T}

The spectra of deuterons dominate in the beam fragmentation range for Ar+C and Ar+Al interactions, whereas the spectra become more central for interactions with heavier targets. The models reasonably describe the shape of the experimental spectra, but under-predict the normalization of the data by factors of 4

Rapidity spectra dN/dy of tritons produced in Ar+A interactions with centrality $0-40 \%$ and $40-100 \%$. The results are integrated over p_{T}

The models reasonably describe the shape of the experimental spectra, but under-predict the normalization of the data by factors of 5-6

Rapidity dependence of the mean transverse kinetic energy $\left\langle m_{T}\right\rangle$ - m obtained from the fits of the m_{T} spectra of protons in Ar+A interactions with centrality 0-40\%

The maximal values of $\left\langle\mathrm{E}_{\mathrm{T}}\right\rangle$ are measured at rapidity $1.0<\mathrm{y}<1.3$. In general, the y dependence of $\left\langle E_{\top}\right\rangle$ for protons is consistent with predictions of the DCM-SMM and PHQMD models.

Rapidity dependence of the mean transverse kinetic energy $\left(m_{T}\right)$-m obtained from the fits of the m_{T} spectra of deuterons in Ar+A interactions with centrality 0-40\%

$$
\left\langle E_{T}\right\rangle=\left\langle m_{T}\right\rangle-m=T_{0}+T_{0}^{2} /\left(T_{0}+m\right)
$$

The PHQMD model reproduces the rise of the data at mid-rapidity in CM, while the DCM-SMM model predict the values which are lower than the experimental results.

Rapidity dependence of the mean transverse kinetic energy ($m T$)-m obtained from the fits of the m_{T} spectra of tritons in $\mathrm{Ar}+\mathrm{A}$ interactions with centrality 0-40\%

Is related to TO value extracted from the fit of the mt spectrum

The PHQMD model reproduces the rice of the data at mid-rapidity in CM, while the DCM-SMM model predict the values which are lower than the experimental results.

Dependence of the mean transverse kinetic energy $\left(m_{T}\right)-m$ on the mass of the nuclear fragment measured in Ar+A collisions with centrality 0-40\%.

The mid-rapidity value of $\left\langle\mathrm{E}_{\top}\right\rangle$ is calculated as the average value for three points at $\mathrm{y}=1.0,1.2$ and 1.4

$$
\begin{aligned}
& \left\langle E_{T}\right\rangle \approx E_{\text {therm }}+E_{\text {flow }}=3 / 2 T^{*}+(\gamma-1) m \\
& \quad \text { Where } \quad \gamma=1 / \sqrt{1-(\beta\rangle^{2}}
\end{aligned}
$$

$\langle\beta\rangle$ is the average radial collective velocity and T^{*} is the temperature of the thermal motion

$$
T^{*}=T \sqrt{(1+\langle\beta\rangle) /(1-\langle\beta\rangle)}
$$

Rises approximately linearly with the mass of the nuclear fragment

The average radial velocity $\langle\beta\rangle$ and source temperature at the kinetic freeze-out extracted from these fits are given in table

	Ar+C	Ar +Al	$\mathrm{Ar}+\mathrm{Cu}$	$\mathrm{Ar}+\mathrm{Sn}$	$\mathrm{Ar}+\mathrm{Pb}$
T, MeV	89 ± 3	76 ± 8	80 ± 5	74 ± 9	80 ± 10
$\langle\beta\rangle$	0.0 ± 0.04	0.26 ± 0.05	0.27 ± 0.03	0.30 ± 0.4	0.26 ± 0.5

Coalescence parameter B_{2} for deuterons measured as a function of p_{T} / A in Ar+A collisions with centrality 0-40\%.

$$
B_{A}=d^{2} N_{A} / 2 \pi p_{T, A} d p_{T},{ }_{A} d y /\left(d^{2} N_{p} / 2 \pi p_{T} d p_{T} d y\right)^{A}
$$

This equation relates the coalescence parameter B_{A} for deuterium ($\mathrm{A}=2$) and tritium ($\mathrm{A}=3$) to the measured yields of these nuclei and protons in the p_{T} and y bins.

The yields of protons and deuterons are measured in the same rapidity range, $0.9<y<1.7(-0.18<y *<0.62)$ The coalescence parameter B_{2} rises with p_{T} but the dependence is close to linear rather than exponential.

The DCM-SMM and PHQMD models predict an almost flat dependence on p_{T}

Coalescence parameter B_{3} for tritons measured as a function of p_{T} / A in Ar+A collisions with centrality 0-40\%.

Statistics of tritons are not sufficient to present B_{3} for $\mathrm{Ar}+\mathrm{C}$ interactions
The yields of protons and tritons are measured in the same rapidity range, $0.9<y<1.7(-0.18<y *<0.62)$ The coalescence parameter B_{3} rises with p_{T} but the dependence is close to linear rather than exponential.

The DCM-SMM and PHQMD models predict an almost flat dependence on p_{T}

Coalescence parameters $B_{2}\left(p_{T}=0\right)$ and $B_{3}\left(p_{T}=0\right)$ and coalescence radii $R_{\text {coal }}^{d}\left(p_{T}=0\right)$ and $\boldsymbol{R}_{\text {coal }}^{t}\left(\boldsymbol{p}_{T}=0\right)$ for deuterons and tritons produced in $\mathrm{Ar}+\mathrm{A}$ interactions.

The $B_{2}(p T)$ and $B_{3}\left(p_{T}\right)$ values given in the previous slide are extrapolated down to $p_{T}=0$ using an exponential fit of the form $B_{A}\left(p_{T}=0\right) \exp \left(a \cdot p_{T}\right)$ as predicted by the coalescence model. To evaluate the uncertainty of the parameter $B_{A}\left(p_{T}=0\right)$, the data errors are scaled by a factor $\sqrt{\chi^{2} / n d f}$ from the first iteration of the fit. The coalescence source radius $R_{\text {coal }}$ is calculated from the $B_{2}\left(p_{T}=0\right)$ and $B_{3}\left(p_{T}=0\right)$ values of deuterons and tritons.

Results: (T) and $\langle\beta\rangle$ measurements

1) In Ar+C interactions BM@N observes no collective radial flow, i.e. $\langle\beta\rangle \sim 0$
2) The measurements of temperature (T) and $\langle\beta\rangle$ obtained by BM@N for interactions with middle-sized nuclei (from Ar+Al to Ar+Pb) are lower than the values observed in experiments with heavy nuclei (such as $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{Au}+\mathrm{Au}$) at higher energies, where T is around $95-110 \mathrm{MeV}$ and $\langle\beta\rangle$ is approximately 0.46 in experiments like NA-49 and STAR BES.
3) The FOPI experiment measured $\mathrm{T} \sim 100 \mathrm{MeV}$ and $\langle\beta\rangle \sim 0.35$ in Au+Au collisions at 1.2 AGeV and found that the radial flow decreases rapidly in interactions of middle size nuclei.
4) The results from BM@N align with the general trend of thermal temperature and radial flow increasing with the size and energy of the collision system.

	$\mathrm{Ar}+\mathrm{C}$	$\mathrm{Ar}+\mathrm{Al}$	$\mathrm{Ar}+\mathrm{Cu}$	$\mathrm{Ar}+\mathrm{Sn}$	$\mathrm{Ar}+\mathrm{Pb}$
T, MeV	89 ± 3	76 ± 8	80 ± 5	74 ± 9	80 ± 10
$\langle\beta\rangle$	0.0 ± 0.04	0.26 ± 0.05	0.27 ± 0.03	0.30 ± 0.4	0.26 ± 0.5

Results: $B_{2} B_{3}$ and coalescence source radii

1) The results for B_{2} and B_{3} in $A r+A$ interactions (centrality $0-40 \%$) are consistent with the energy dependence of B2 and B3 factors observed in central interactions of heavy nuclei, as shown in the NA49 analysis.
2) The coalescence source radii for deuterons and tritons produced in Ar+A interactions (centrality $0-40 \%$) align with values ranging from 3 to 3.5 fm in accordance with the prescriptions by I.G. Bearden et al. in their study published in Eur. Phys. J. C 23, 237-247 (2002). except for deuterons produced in $\mathrm{Ar}+\mathrm{C}$ interactions.

	$\mathrm{Ar}+\mathrm{C}$	$\mathrm{Ar}+\mathrm{Al}$	$\mathrm{Ar}+\mathrm{Cu}$	$\mathrm{Ar}+\mathrm{Sn}$	$\mathrm{Ar}+\mathrm{Pb}$
$B_{2}\left(p_{T}=0\right) / 10^{3}, \mathrm{GeV}^{2} / \mathrm{c}^{3}$	5.5 ± 1.9	1.7 ± 0.5	1.8 ± 0.4	1.2 ± 0.4	1.1 ± 0.2
$B_{3}\left(p_{T}=0\right) / 10^{6}, \mathrm{GeV}^{3} / \mathrm{c}^{4}$		1.7 ± 1.7	4.0 ± 1.2	2.7 ± 0.6	1.8 ± 0.4
$R_{d}\left(p_{T}=0\right), \mathrm{fm}$		2.1 ± 0.3	3.1 ± 0.3	3.0 ± 0.2	3.5 ± 0.4
$R_{t}\left(p_{T}=0\right), \mathrm{fm}$		3.1 ± 0.5	2.7 ± 0.2	2.9 ± 0.1	3.1 ± 0.2

3) These findings correspond to the energy dependence of coalescence Collision Energy $\sqrt{\mathrm{s}_{\mathrm{NN}}}(\mathrm{GeV})$ source radii observed in heavy ion collisions

STAR Collaboration: [nucl-ex] arXiv:2311.11020 as reported in the NA49 analysis (Phys. Rev. C 94 (2016) 4, 044906).

Results: $N_{p} \cdot N_{t} / N_{d}^{2}$ ratio

BM@N results: 0.53 to 0.69
Lower Energy Data (HADES and FOPI): 0.8 to 1.0

Higher Energy Data (STAR and NA49): 0.4 to 0.5

The results from the BM@N experiments fall between the values obtained from experiments done at lower and higher energies.

STAR Collaboration: [nucl-ex] arXiv:2311.11020

	$\mathrm{Ar}+\mathrm{C}$	$\mathrm{Ar}+\mathrm{Al}$	$\mathrm{Ar}+\mathrm{Cu}$	$\mathrm{Ar}+\mathrm{Sn}$	$\mathrm{Ar}+\mathrm{Pb}$
$N_{p} \cdot N_{t} / N_{d}^{2}$	0.53 ± 0.10	0.55 ± 0.09	0.69 ± 0.11	0.60 ± 0.07	0.59 ± 0.06

Summary

The BM@N experiment presents physics results on the yields and ratios of p, d, and t in argon-nucleus interactions at a beam energy of 3.2 AGeV . These results are compare with the DCM-SMM and PHQMD models, as well as with previously published results of other experiments.

The spectra of transverse mass $\left(m_{T}\right)$ are measured and the mean values $\left\langle m_{T}\right\rangle$ - m are presented for more central $0-40 \%$ events as functions of rapidity (y) and fragment mass. The values $\left\langle\mathrm{m}_{T}\right\rangle-\mathrm{m}$ show a linear dependence on mass. These results are parameterized as a function of the temperature and transverse velocity of the radial expansion of the source.

The rapidity spectra $d N / d y$ of p, d, and t are presented for the entire p_{T} range in two centrality ranges. While the DCM-SMM and PHQMD models reproduce the shapes of the spectra, they underestimate the yields of d and t by factors of 4 and 6 , respectively.

The deuteron-to-proton and triton-to-proton yield ratios are interpreted using a coalescence approach. Coalescence parameters B_{2} and B_{3} for d and t are calculated in dependence on the transverse momentum p_{T} The coalescence radii of the d and t source are extracted from the B_{2} and B_{3} values extrapolated to $\mathrm{p}_{\mathrm{T}}=0$.

The compound yield ratio $N_{p} \cdot N_{t} / N_{d}$ of protons and tritons to deuterons is evaluated from the $\mathrm{dN} / \mathrm{dy}$ spectra in the rapidity range $-0.18<y *<0.62$. The result is compared with the values measured in heavy nucleus-nucleus collisions at lower and higher energies.

Plan to discuss the paper draft and present the results at conferences as preliminary

Thank you for your attention !

Analysis of p,d,t production in 3.2 AGeV argon-nucleus interactions

Results of the analysis were presented at the 10th BM@N Collaboration meeting in May 2023 (L.Kovachev) and at the BM@N Analysis and Software meeting in September 2023 (L.Kovachev, M.Kapishin).
Intermediate steps of the analysis were presented at the previous Collaboration meetings (L.Kovachev, V.Plotnikov).

Related analysis notes:
https://indico.jinr.ru/event/4165/attachments/17543/29918/Note_analAr_pdt3.pdf https://indico.jinr.ru/event/4165/attachments/17543/29919/Note_centrality_pdt_text.pdf https://indico.jinr.ru/event/4165/attachments/17543/29920/Flux lumi trigger.pdf https://indico.jinr.ru/event/4165/attachments/17543/29921/lumi.pdf $158 A$ GeV at the CERN Super Proton Synchrotron

Energy dependence of the source temperature $T(a)$ and average collective transverse velocity β (b) at the kinetic freezeout in central A + A collisions. The NA49 data from the mt versus mass analysis (see text for detail) are indicated by green circles; those from blast-wave (BW) fits of mt spectra of hadrons from NA49 are depicted by blue squares; red stars are the STAR-BES results from a BW analysis of hadron spectra reported in Ref. [50].

In the context of a coalescence model for nuclear fragment formation, the coalescence factor B_{A} is a crucial parameter that characterizes the process. The equation provided,

$$
E_{A} d^{3} N_{A} / d^{3} p_{A}=B_{A}\left(E_{p} d^{3} N_{p} / d_{p}^{3}\right)^{Z}\left(E_{n} d^{3} N_{n} / d^{3} p\right)_{\mid p=p_{A} / A}^{A-Z}
$$

describes how the invariant momentum spectra of the nuclear fragments (NA) with charge Z and atomic mass number A are related to the yields of the coalescing nucleons (protons Np and neutrons Nn) at the same velocity.

Here's a breakdown of the key components of the equation:
$E_{A} d^{3} N_{A} / d^{3} p_{A}$: Energy dependence of the differential yield of nuclear fragments with respect to their momentum.
B_{A} : Coalescence factor that quantifies the probability of nucleons coalescing into a nuclear fragment.
$\left(E_{p} d^{3} N_{p} / d^{3}{ }_{p}\right)$: Energy dependence of the differential yield of protons involved in the coalescence process.
$\left(E_{n} d^{3} N_{n} / d^{3} p\right)^{A-z}$: Energy dependence of the differential yield of neutrons involved in the coalescence process.
p_{A} and $p=p^{A} / A$: Momenta of the nuclear fragment and the nucleon, respectively, where $p A / A$ represents the momentum per nucleon.

Comparison of experimental data and MC

Comparison of the experimental distributions (red crosses) and reconstructed Monte Carlo GEANT distributions of events generated with the DCM-SMM model (blue lines): number of tracks reconstructed in the primary vertex (left); number of fired BD channels (right).

Correlation obtained from the DCM-SMM model of the number of tracks in the primary vertex (left) and the number of fired channels in the BD (right) with impact parameter.

Systematic uncertainties

- Systematic uncertainty of the central tracking detector efficiency: it is timated from the remaining difference in the number of track hits in the central detectors in the simulation relative to the data (see Fig. 5d) and found to be within 3\%
- Systematic uncertainty of the matching of central tracks to the CSC (DCH) hits and ToF-400 (ToF-700) hits: it is estimated from the remaining differ270 ence in the matching efficiency in the simulation relative to the data and found to be within 5%.
- Systematic uncertainty of the reconstruction efficiency due to the remain273 ing difference in the X / Y distribution of primary vertices in the simulation relative to the data.
- Systematic uncertainty of the background subtraction in the mass-squared M2 spectra of identified particles: it is estimated as the difference between the background integral under the p, d, t mass-squared windows taken from "mixed events" and from the fitting of the M2 spectra by a linear function. The latter is done in the M2 range, excluding the proton, deuteron, triton signal windows.

Systematic uncertainties

Systematic uncertainty calculated as half of the difference of the proton, deuteron, triton yields measured in bins of rapidity y in the ToF-400 and ToF-700 detectors

- Systematic uncertainy of the event centrality weights estimated

1) from the remaining difference in the shape of the $N($ track) and $N(B D)$ distributions in the y and $p T$ bins in the data and the simulation;
2) from the difference in the event centrality weights taken from the two-dimensional $N($ track $) / \mathrm{N}(\mathrm{BD})$ distribution relative to the one-dimensional $N(B D)$ distribution.
The total systematic uncertainty of the yield and reconstruction efficiency for the various targets, calculated as the quadratic sum of these uncertainties For the evaluation of the systematic uncertainty of the trigger efficiency ϵ trig, the following sources are considered:

- The systematic uncertainty associated with the factorization assumption of the two trigger factors, BD and SiMD, was estimated from the difference of ttrig evaluated as described in Section 4, with the result evaluated using the limited amount of events registered with the beam trigger BT.
- To estimate a possible distortion of ϵ trig ($B D \geq m$) due to the selection of events with the hardware-set condition $N(S i M D \geq n)$, ϵ trig was also evaluated using the events recorded with the beam trigger $B T$. The difference between the results is treated as another source of systematic uncertainty of the trigger efficiency.
- Variations of the trigger efficiency on the track multiplicity in the primary vertex and on the X / Y vertex position.

[^0]: https://indico.jinr.ru/event/4165/attachments/17543/29918/Note_analAr_pdt3.pdf https://indico.jinr.ru/event/4165/attachments/17543/29919/Note_centrality_pdt_text.pdf
 https://indico.jinr.ru/event/4165/attachments/17543/29920/Flux lumi_ trigger.pdf
 https://indico.jinr.ru/event/4165/attachments/17543/29921/lumi.pdf

